Observations of Europa’s surface materials with Subaru/IRCS and its comparison with laboratory experiments

Shuya Tan
Earth-Life Science Institute (ELSI), Tokyo Tech

Collaborator:
Y. Sekine (ELSI), M. Kuzuhara (Astrobiology center, NAOJ)

2019/11/22 Subaru Telescope 20th Anniversary Conference, Hawaii
Europa: Possible Habitable Environment

- Icy covered surface
- Interior ocean

Image credit: NASA JPL
Why is Europa possible habitable?

- Water-Rock interaction
 - Geologically active surface
 - Material cycle
 - Redox disequilibrium = Energy for life
 - Oxidizing: O_2, SO_4, ClO_4
 - Reducing: H_2, H_2S

Topics:
1. Reducing?
2. Radiation
Outline of today’s talk

1. Europa’s observation

2. Topic 1: The cycle of sulfur in the interior
 - Laboratory experiments
 (Implications for observation)

3. Topic 2: Oxidation of chlorine on the surface
 - Observation with Subaru
 - Laboratory experiments

 \[\text{On-going}\]
Europa’s observation: Surface reflectance

Non-ice material: **Ocean composition?**

- NIR observation by Galileo spacecraft
 (e.g., McCord et al., 1999)
 - SO_4-bearing salt? (e.g., MgSO_4
 - Low resolution ($\delta\lambda \sim 25 \text{ nm}$)
 - No regional distribution

(Edited from Dalton et al., 2007)
Europa’s observation: Surface reflectance

- NIR Observation by telescope (Keck, VLT)
 - High resolution (δλ~0.5 nm) (e.g., Fischer et al., 2015)
 - Regional distribution

H₂SO₄

Trailing side; Sulfur from Io

Cl-bearing salts? (e.g. NaCl)

Geological active region

Keck/OSIRIS data

(Fischer et al., 2015)

SO₄-salt (sulfate)

Cl-salt (Chloride)

Reflectance

Major composition: Cl? Not SO₄
Topic 1: Environment of Europa’s interior?

- NIR Observation by telescope (Keck, VLT)
 - High resolution ($\delta\lambda \sim 0.5$ nm) (e.g., Fischer et al., 2015)
 - Regional distribution

H$_2$SO$_4$

Trailing side; Sulfur from Io

Cl-bearing salts? (e.g. NaCl)

Geological active region

SO$_4^{2-}$ supply into the ocean
10^{-3}-10^{-2} mol/yr/m2 (Hand et al., 2015)

\leftrightarrow Earth’s ocean 10^{-2} mol/yr/m2

\rightarrow SO$_4^{2-}$ as the major component??

Where did SO$_4$ go in Europa’s ocean?

What process is responsible for sink of SO$_4$?
Sulfur sink: Hydrothermal sulfate reduction

Hydrothermal system:
Sink of 40% of SO_4^{2-} in Earth’s ocean

$$\text{SO}_4^{2-} + 4\text{H}_2 + 2\text{H}^+ \rightarrow \text{H}_2\text{S} + 2\text{H}_2\text{O}$$

(e.g., Charlson et al., 2000)

Previous experiments ~10 MPa
← Earth’s seafloor condition
(e.g., Truche et al., 2009)

How effective does sulfate reduction proceed under Europa’s conditions (~100 MPa)?
What condition would be suitable for sulfate reduction? (pH & rocks)
Measurement of reaction rates

- Dickson-type autoclave
 - Autoclave of Stainless Steel 630 max. 130 MPa → Europa, Mars, Super Earth
 - By pressurizing the flexible gold cell, we collect in-situ fluid samples without significant changes in P-T
Measurement of reaction rates

- Dickson-type autoclave
 - Autoclave of Stainless Steel 630 max. 130 MPa → Europa, Mars, Super Earth
 - By pressurizing the flexible gold cell, we collect in-situ fluid samples without significant changes in P-T

Applicable to simulate hydrothermal reactions beyond Earth
Sulfate reduction proceeds on Europa’s seafloor? (Tan et al., submitted)

- Small pressure dependence: Sulfate reduction proceeds effectively on Europa, as on Earth
- Strong pH dependence: inhibited at pH > 6

Graph showing the reaction rate log k/s vs pH at different pressures:
- ~10 MPa (Earth)
- 100 MPa (Europa)

Legend:
- 10MPa (This study)
- 100MPa (This study)
- 10 MPa (Truche et al., 2009)
- 50 MPa (Cross et al., 2004)
- 3.5-6.8 MPa (Thom & Anderson, 2008)
Hydrothermal fluid can be pH < 6

What decides pH and composition of hydrothermal fluid?
→ Water-rock interaction (e.g., Shibuya et al., 2015)

Europa’s possible seafloor rock: **Chondritic** / **Basaltic**

Themodynamic calculation

Chondritic rock

<table>
<thead>
<tr>
<th>Initial SO_4^{2-} (mM)</th>
<th>Fluid pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>200</td>
<td>6</td>
</tr>
<tr>
<td>300</td>
<td>6</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
</tr>
<tr>
<td>500</td>
<td>6</td>
</tr>
</tbody>
</table>

Basaltic rock

<table>
<thead>
<tr>
<th>Initial SO_4^{2-} (mM)</th>
<th>Fluid pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>400</td>
<td>5</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
</tr>
</tbody>
</table>

Sulfate reduction **inhibited**

Sulfate reduction **proceeds**
The fate of exogenic SO_4^{2-} in Europa

Chondritic rock
- CO_2, H_2
- Na_2SO_4, Na_2CO_3, $\text{NaCl}/\text{MgCl}_2$
- H_2SO_4
- SO_4^{2-}, Na^+, Mg^{2+}, Cl^-, CO_3^{2-}
- $\text{pH} > 6$
- SO_4 accumulate

Basaltic rock
- H_2S, H_2
- $\text{NaCl}/\text{MgCl}_2$
- H_2SO_4
- SO_4^{2-}, Na^+, Mg^{2+}, Ca^{2+}, Cl^-
- $\text{pH} < 6$
- Sink of SO_4
- FeS precipitate

Controlled by seafloor rock composition
The fate of exogenic SO_4^{2-} in Europa

Chondritic rock
- CO_2, H_2
- Na_2SO_4, Na_2CO_3, NaCl/MgCl_2
- H_2SO_4
- SO_4^{2-}, Na^+, Mg^{2+}, Cl^-, CO_3^{2-}
- $\text{pH} > 6$
- CaSO_4 accumulate

Basaltic rock
- H_2S
- NaCl/MgCl_2
- H_2SO_4
- SO_4^{2-}, Na^+, Mg^{2+}, Ca^{2+}, Cl^-
- $\text{pH} < 6$
- Sink of SO_4
- FeS precipitate

Consistent
- NaCl/MgCl_2

Controlled by seafloor rock composition
Proxy indicator for observation

Experimental data provides proxy indicator for observation

Gas species in H$_2$O plume
H$_2$S, CO$_2$, H$_2$
→ ALMA,
Future spacecraft
(Europa Clipper)
Surface salts
→ Large telescopes (e.g., JWST)

(e.g., Roth et al., 2014)
Irradiation of high-energy particle (cf. electron) & UV (e.g., Paranicas et al., 2009)

- Oxidation of surface material (e.g. forming oxychlorines)

\[
\text{H}_2\text{O} \rightarrow \text{O}_2, \text{H}_2\text{O}_2, \text{O}_3
\]

- Redox disequilibrium
- Habitability?

\[
\text{NaCl/MgCl}_2 \\
\rightarrow \text{NaClO}_3/\text{Mg(ClO}_3)_2, \text{NaClO}_4/\text{Mg(ClO}_4)_2?
\]

(Ligier et al., 2016, Johnson et al., 2019)

Surface oxidation: Important for Europa’s geochemistry

Topic 2: Cl-bearing salts oxidation on Europa’s surface?

Eutectic point↓

➢ Habitability?

➢ Tectonics?

(Image by NASA JPL)
Current understanding of Cl-salt oxidation

Surface observations
(e.g., Fischer et al., 2015, Ligier et al., 2016)

- **Salt Cl? ClO₄?**

Peaks of chlorine salts: ~1.0, 1.2, 1.4 μm
(Data of VLT/SINFONI, Ligier et al., 2016)

Limited wavelength range

Oxychlorine: What? Where?

Irradiation experiments

- **Electron for chloride**
 (e.g., Hand et al., 2015)
 → Color changes

- **UV for NaCl + SiO₂**
 (Carrier et al., 2015)

- **Electron for Cl₂ + CO₂**
 (Kim et al., 2013)
 → ClOₓ generated

No research of H₂O ice + Cl-salt

Generating thin film of ice + salt is challenging

Oxidation mechanism?
Europa’s surface observation with Subaru/IRCS

Grism spectroscopy

- Date: May 16, 17 (S19A-119)
 - 5/16: Leading side
 (material from interior?)
 - 5/17: Trailing side (Exogenic sulfur)

- Angular resolution \(^\text{w/ AO188}\)
 ~0.06 arcsec/pix (~300 km~Geological unit)

- Standard stars (G2V)
 HD154805, HD160257

- Fix of telluric absorption,
 calculation of reflectance \(R(\lambda)\):
 \[R(\lambda) = \frac{F_{\text{Europa}}(\lambda)}{F_{\text{G2V}}(\lambda)} \]

- EXP time: ~2 s (SNR > 10)

(Fischer et al., 2015)
Expected spectra

- Band: zJH (0.95–1.5 μm) ← First observation by telescope
- Spectral resolution: $R \sim 230$, $\delta \lambda \sim 2.3$ nm ← Higher than spacecraft data ($\delta \lambda \sim 25$ nm)
- Expected material from interior (5/16 area): Cl, ClO$_3$, ClO$_4$-salts
 ➢ Different peak position, shape? (hydrated waters $\sim 1.0, 1.2, 1.4$ μm)

![Reflectance spectra graph](Hanley et al., 2014)
• Similar spectrum to previous data of Galileo
• Strong telluric absorptions
 ➢ Better fix is necessary (time variation of atmospheric condition)

(Edited from McCord et al., 1999)
Preliminary results

Composition?
- Nearly H$_2$O ice spectrum
- Less specific features

Salts: < 40\% (Fischer et al., 2015)
 < 30\% (Ligier et al., 2016)

☐ Non-hydrated salt?
(NaCl, NaClO$_4$)

☐ De-hydrated salt?
(MgCl$_2$, Mg(ClO$_4$)$_2$)
← Dehydration by UV?
(e.g., Thomas et al., 2017)

Analysis of other area is on-going

H$_2$O ice : salt = 60 : 40
(Clark et al., 2007, Hanley et al., 2014)

- NaCl
- NaClO$_4$
- NaClO$_4$·2H$_2$O
- MgCl$_2$·2H$_2$O
- MgCl$_2$·4H$_2$O
- MgCl$_2$·6H$_2$O
- Mg(ClO$_4$)$_2$·6H$_2$O
- Mg(ClO$_3$)$_2$·6H$_2$O
Irradiation experiment

- Electron: 5–10 keV
- UV: 115–400 nm
- Temperature: 90–150 K
- Pressure: 10^{-6}–10^{-5} Pa

Thin film of Cl-salt + H₂O ice
(NaCl, MgCl₂·6H₂O)
Thickness ~100 μm

Electron/UV ~10 hours

Newly-constructed system

Electron gun
UV lamp
TMP
Sample
100 mm
Thin film of Cl-salt + H₂O ice (NaCl, MgCl₂·6H₂O)
Thickness ~100 μm

Analysis of compositional change:
ClO₄⁻ (Ion Chromatography)
Cl redox state (XAS)

Electron: 5–10 keV
UV: 115–400 nm
Preliminary results of experiments

IC analysis: No detection ClO$_4$ in all case
Detection limit: ClO$_4$/Cl > ~0.1–1%
Upper limit yield: 10^{-24} mol/e$^-$, 10^{-26} mol/photon

XAS analysis
Mg(ClO$_4$)$_2$?
Only 1 case: MgCl$_2$$\cdot$6H$_2$O, 100–120 K, 11 hours, electron, 5 keV, 1.7μA

No clear detection of oxychlorine generation

- Reaction proceeds in shallow depth?
 Penetration depth: e$^-$ (10keV: 1 μm), UV (0.1 μm)

- Short irradiation time?
e$^-$ /UV dose <100 yrs on Europa’s surface (~10 Ma)

Retry in same condition → No detection in IC

Too small scale in time & space is problem?
On-going and future study

1. Higher energy electron irradiation
 Energy of electron irradiated to Europa:
 ~10 keV−100 MeV
 (e.g., Paranicas et al., 2009)
 ~1 MeV electron: penetrating ~ 4 mm
 (Zombeck, 1982)

2. Analysis of observing data of Subaru
 - Better fix of atmospheric absorption
 - Analysis of wide area on the surface
Summary

- Europa’s interior ocean: Habitable?
 - Surface material: Seawater & Seafloor rock reflect?
 - Hydrothermal experiments
 - Proxy for observations: Cl-salts (surface), H$_2$S (plume)

- Irradiated Surface: Cl-bearing salt oxidized?
 - Surface observation with Subaru
 - Irradiation experiments
 \[\text{On-going program}\]