NZ61cm望遠鏡に搭載する 紫外・可視・近赤外同時撮像装置ATEAの開発

大阪大学M1 奥本祐生 鈴木大介、山響(大阪大学)、都築俊宏(国立天文台)

Index

- •開発背景
- •開発目的
- ・3バンド同時撮像装置ATEAの設計
- エラーバジェットと公差解析
- まとめと今後の展望

重力マイクロレンズ法による系外惑星探査

重力マイクロレンズ法による系外惑星探査

Cowperthwaite +17

NZ61cm望遠鏡

口径	: 61cm
F値	: 13.5
形式	: リッチー・クレチアン式
場所	: ニュージーランド Mt.John天文台
観測波長	:g,r,i-band

NZ61cm望遠鏡に搭載されている 3バンド同時撮像カメラTRIPOLE5

- •開発背景
- •開発目的
- ・3バンド同時撮像装置ATEAの設計
- エラーバジェットと公差解析
- まとめと今後の展望

設計仕様	紫外線	可視光	近赤外線	
観測波長	300-400nm	700-930nm	1170-1330nm	
ピクセルスケール	0.35"/pixel(仮)	0.2"/pixel(仮)	0.27"/pixel	
視野	5.83×4.68[arcmin ²]			
F値	F/	6.25(望遠鏡+ATE		ШШФ
環境圧力		1atm	日 使用予定の検 最小視野	山岙の
環境温度		5±5℃		
結像性能 (RMSスポット半径)		0.4″		
		\rightarrow		
			収差を含めてスポッ Mt.Johnのseeing	ットが 1.5"
			を十分下回るよう	こ設定

結像性能(ZEMAXによる解析結果)

Spot Diagram@結像面

- •開発背景
- •開発目的
- ・3バンド同時撮像装置ATEAの設計
- エラーバジェットと公差解析
- •まとめと今後の展望

現時点でのエラーバジェット

大分類	中分類	Value (UV)	Value (OPT)	Value (NIR)
設計	望遠鏡+ATEAの性能	0.28	0.12	0.24
面精度	製造誤差	0.199	0.210	0.151
組み立て誤差	光学調整後のノミナル性能からの性能変化	0.1(仮)	0.1(仮)	0.1(仮)
調整残差の影響	調整機構の調整ピッチ残差の影響	0.05	0.05	0.05
その他	指向・振動・環境変化等による誤差	0.05	0.05	0.05
Total optical resolution		0.364	0.271	0.309
Specification		0.4	0.4	0.4
Margin to 0.4arcsec		0.036	0.129	0.091

単位は["]

公差解析 組み立て誤差の計算

現時点でのエラーバジェット

大分類	中分類	Value (UV)	Value (OPT)	Value (NIR)	
設計	望遠鏡+ATEAの性能	0.28	0.12	0. 現在	王解析中
面精度	製造誤差	0.199	0.210	0.151	
組み立て誤差	光学調整後のノミナル性能からの性能変化	0.1(仮)	0.1(仮)	0.1(仮)	
調整残差の影響	調整機構の調整ピッチ残差の影響	0.05	0.05	0.05	
その他	指向・振動・環境変化等による誤差	0.05	0.05	0.05	
Total optical resolution		0.364	0.271	0.309	
Specification		0.4	0.4	0.4	
Margin to 0.4arcsec		0.036	0.129	0.091	

現在の光学設計で仕様を満たすか検討中

まとめと今後の展望

まとめ

紫外・可視・近赤外線同時撮像装置ATEAの設計を行っており、設計段階で仕 様性能0.4"を満たしている。現在は実現に向けて公差解析を行っている最中で ある。

今後の予定

- ▶ 2024年度 : 光学系、各ユニットの設計完了
- ▶ 2025年度前半 :各光学素子・ユニット等の作成(OPT,NIR)
- ▶ 2025年度8月頃:NZ61cm望遠鏡へのインストール(OPT,NIR)、テスト観測
- ▶ 2026年度以降 : UVチャンネルの追加

Development of ATEA is supported by the JSPS KAKENHI (JP24H01811) and by Advanced Technology Center (ATC) of NAOJ.

Appendix カメラについて

Appendix 面精度について

面精度劣化要因	面精度	RMS半径変化	面の種類	RMS半径変化["]
		["](19"])	L1_S1	0.048
研磨面精度	λ/8	0.034	L1_S2	0.048
	λ/20	0.014	L2_S1	0.048
コーナインクによる面相反为化			L2_S2	0.048
保持による面精度劣化	λ/10	0.027	DM1_S1	0.159
			Fil_S1	0.051
環境による面精度劣化	λ/20	0.014	Fil_S2	0.051

※特に反射面が面精度劣化に大きく 影響を与えている