High Contrast Imaging at the Photon Noise Limit with WFS-based PSF calibration

Olivier Guyon

NAOJ, Subaru Telescope NINS Astrobiology Center University of Arizona

GLINT + VAMPIRES team: Barnaby Norris, Marc-Antoine Martinod

SCExAO team: Kyohoon Ahn, Thayne Currie, Vincent Deo, Julien Lozi, Nour Skaf, Vincent Vievard

Alison Wong (U. Sydney), Jared Males (UofArizona), Nem Jovanovic (Caltech)

Spirit of Lyot, June 2022, Leiden

Work supported by: NAOJ, NASA & Heising-Simons foundation

Scientific Motivation

High contrast imaging is currently limited by speckle noise at small IWA. Speckle noise typically ~100x photon noise, scales poorly with exposure time.

Poor detection confidence: is this a speckle or a planet ?

What if we knew exactly what the stellar PSF is ? "exactly" = bias-free estimate with precision at least as good as photon noise.

Is it possible to derive PSF from WFS telemetry ?

HR8799 system (c,d,e) Subaru Telescope/SCExAO

Scientific Motivation: Representative Examples

	Space-4m-Earth-G2	Ground-30m-Earth-M4
Star	G2 at 8pc	M4 at 4pc
Bolometric luminosity $[L_{Sun}]$	1.000	0.0072
Planet orbital radius [au]	1.0	0.085
Maximum angular separation [arcsec]	0.125	0.021
Reflected light planet/star contrast	1.5e-10	2.1e-8
Telescope diameter [m]	4	30
Science spectral bandwidth	20%	20%
Central Wavelength	797 nm (I band)	1630 nm (H band)
Maximum angular separation $[\lambda/D]$	3.0	1.9
Efficiency	20 %	20~%
Total Exposure time	10 ksec	10 ksec
Star brightness	$m_I = 3.60$	$m_H = 5.65$
Photon flux in science band (star)	7.37e8 ph/s	$5.62\mathrm{e9}~\mathrm{ph/s}$
Photon flux in science band (planet)	0.11 ph/s	118 ph/s
Background surf. brightness [contrast]	3.5e-10 (zodi+exozodi)	1e-5 (starlight)
Background flux in science band	0.26 ph/s	56200 ph/s
Photon-noise limited SNR (10 ksec)	18.1	49.7
Post-processing timescale (SNR=10 at planet flux)	50 mn	$7 \mathrm{mn}$
WFS timescale (SNR=10 at background flux)	6 mn	$1.8 \mathrm{ms}$

With 1e-5 raw contrast, Earth-size habitable planet imaged at SNR=10 in 7mn with 30m aperture in H band

Challenge: Planet is still 500x fainter than starlight

Real-time control vs. post-processing: Latency and Noise

Solution Uniqueness

Input measurement space (WFS, Bright Field, LOWFS etc...)

Speckle field / Dark Hole space

Solution Uniqueness

Input measurement space (WFS, Bright Field, LOWFS etc...)

Speckle field / Dark Hole space

On-Sky Validation of Solution Uniqueness

Similar WFS \rightarrow similar PSF ? Similar PSF \rightarrow similar WFS ?

YES NO (except at null)

Focal Plane image @750nm

WFS→ PSF relationship can be learned on-the-fly

Improving WFS reference from Focal Plane Image (DrWHO)

Evolution of the on-sky PSF before running the algorithm, after the first iteration, and the after last iteration. Each image is 0.25 arcsec (40x40 pixels) across, acquired at λ = 750 nm, 30 sec exposure time (computed by co-addition of 15,000 frames acquired at 500 Hz)

$On-sky \ WFS \rightarrow PSF \ Derivation \ with \ Neural \ Net$

Credit: Barnaby Norris & Alison Wong

PSF Subtraction relies on WF & PSF Stability

Are statistical properties of WF stable over course of observation ?

Self-Calibration relies on Stability of WFS \rightarrow PSF Relationship

Are optics between WFS and science image stable over course of observation ?

Ideal Hardware Configuration keeps relationship between WFS and PSF <u>stable</u>

Speckle Calibration from Bright Field Starlight

WF Control Calibration

We focus here on CALIBRATION (blue arrows)

Can we reconstruct residual starlight from auxiliary wavefront sensors and cameras ?

Experimental validation (lab)

1550nm, 25nm BW, Lyot Coronagraph 7 kHz frame rate

Single Frame Residual is at RON+PHN Level

30x Gain in Speckle Variance Demonstrated

All frames 128-sample (N = 60,000)cluster DH area Input sensing area DH area : $\sigma^{2}_{all}/\sigma^{2}_{cluster} = 30.7$ Input sensing area : $\sigma_{all}^2/\sigma_{cluster}^2 = 35.7$

Average (dark removed)

Variance (RON+ PHN removed)

Optimizing Wavelength for Sensitivity

Short wavelength : better optical gain from intensity to OPD Red target: higher photon count at longer wavelength

Table 6 Optimal Wavefront Sensing Wavele	length - I	linear	Regime
--	------------	--------	--------

Spectral	Teff	Optimal	Photon flux ^b	Flux gain relative to			
Type	[K]	$\operatorname{Band}^{\mathrm{a}}$	$[m^{-1}.ms^{-1}]$	В	R	Н	
B0V	31500	U	1.08e10	2.14	12.06	1337.0	
A0V	9700	В	5.01e7	1.00	4.25	204.7	
F0V	7200	В	1.05e7	1.00	2.78	82.1	B-band WFS is 33.7x
G0V	5920	В	1.34e6	1.00	1.80	33.7	more efficient than H-
K0V	5280	В	3.26e5	1.00	1.33	17.6	band WFS
M0V	3850	R	$3.53\mathrm{e}4$	2.03	1.00	3.93	
M4V	3200	Ι	4.65e3	12.5	1.80	2.83	
M8V	2500	J	6.00e2	150.0	11.6	1.98	

^aOptimal bandwidth selected among standard astronomical spectral bands (U, B, R, I, J, H). Assumes fixed relative spectral bandwidth $d\lambda/\lambda$. Central wavelength listed; ^bAssuming 10% effective spectral band at optimal sensing wavelength, main sequence star at 10pc.

Integating WFS and "PSF" within the same optical chip

"Astrophotonics: The Rise of Integrated Photonics in Astronomy" Norris & Bland-Hawthorn. Optics and Photonics News (2019) https://www.osa-opn.org/home/articles/volume 30/may 2019/features/astrophotonics the rise of integrated photonics in/

Illustration by Phil Saunders

GLINT module @ Subaru/SCExAO

 Null output: starlight is almost completely removed by destructive interference, providing deep contrast.
→This is where planet light and spectra are extracted

- **Fringe tracking output**: Bright starlight interference efficiently encode residual small (nm-level) optical aberration
- →Feed this information in real-time to upstream deformable mirror for correction
- →Use this information to calibrate how much starlight is left in null outputs

"Scalable photonic-based nulling interferometry with the dispersed multi-baseline GLINT instrument" Martinod, Norris, Tuthill...Guyon et al. **Nature Communications (2021)** link: <u>https://www.nature.com/articles/s41467-021-22769-x</u>

GLINT – on-sky Alpha Boo

1.4 kHz frame rate

Credit: Barnaby Norris, Univ. Sydney

Interferometric WFS with FIRST instrument

Credit: S. Vievard and V. Deo

On-sky demonstration of interferometric WFS

 \rightarrow provides path to high sensitivity chromatic WF measurement

Conclusions

Self-calibrating high contrast imaging systems could eliminate speckle noise

- $\rightarrow\,$ Deeper detection limits, limited by photon noise in science images
- \rightarrow Reliable science data

Early on-sky experiments are encouraging, but there are tough challenges :

- Computation algorithms and speed in high-dimension space
- Hardware implementation: wavelength diversity, data acquisition speed, internal stability

Photonic solutions (Photonic Nulling chip, Lantern, Integrated Optics) seem wellsuited for achieving self-calibration:

- Small number of degrees of freedom
- Can be spectrally dispersed with high readout speed