Subaru Coronagraphic Extreme Adaptive Optics (SCExAO): Wavefront Control Optimized for High Contrast Imaging

Olivier Guyon [1,2,3], <u>Ruslan Belikov [4]</u>, Julien Lozi [2], Nemanja Jovanovic [5], Jared Males [3], Frantz Martinache [6], Ben Mazin [7], Barnaby Norris [8], Prashant Pathak [2], Tyler Groff [9]

[1] Japanese Astrobiology Center, National Institutes for Natural Sciences (NINS)

[2] Subaru Telescope, National Astronomical Observatory of Japan (NINS)

[3] University of Arizona

[4] NASA Ames Research Center

[5] Caltech

[6] Observatoire de la cote d'Azur

[7] University of California Santa Barbara

[8] University of Sydney

[9] NASA GSFC

k

Subaru Coronagraphic Extreme Adaptive Optics

- Flexible high contrast imaging platform (Nas port)
- Meant to **evolve to TMT instrument** and validate key technologies required for direct imaging and spectroscopy of habitable exoplanets

Telescope time available to US community (Keck & Gemini time exchange) and non-US through collaborations with team

Modules/instruments funded by Japan + international partners:

- MKIDS IFU built by Princeton Univ (Japan-funded)
- MKIDs built by UCSC (Japan-funded)
- SAPHIRA camera provided by UH
- VAMPIRES instrument funded and built by Australia
- FIRST instrument funded and built by Europe
- RHEA IFU provided by Australian team

Strong research collaborations with multiple groups:

- Univ. of Arizona / MagAO(-X) (shared dev., wavefront control, coronagraphy)
- Kernel group @ Observatoire de la Cote d'Azur (wavefront control)
- Leiden Univ, JPL (coronagraphy)
- Northwestern Univ (detector dev)
- Univ. of Sydney (Photonics techs, nulling interferometry)
- Keck (near-IR WFS)

Contrast and Angular separation

CEAG Subaru Coronagraphic Extreme Adaptive Optics

CEAO Subaru Coronagraphic Extreme Adaptive Optics

IR nuller FIRST (bench behind SCExAO) **VAMPIRES** (inside enclosure) CHARIS spectrograph SAPHIRA **HiCIAO** (MKIDs in Sept 2017) Fiber-fed instruments (not visible here): - RHEA (visible IFU, R=70,000) - IRD (near-IR spectrograph, R=70,000)

+ experimental photonics spectro

VAMPIRES (2 cameras)

SCExAO Light path

CENER Subaru Coronagraphic Extreme Adaptive Optics

Wavefront Control loops

Open loop controlOpen loop control

SCExAO Light path

Preliminary VAMPIRES science

Diffraction-limited imaging in visible light

SCExAO Light path

Current PSF stability @ SCExAO

Stable PSF for coronagraphy SCExAO provides sensing and correction at 500 Hz - 3.5 kHz 14,400 pixel WFS \rightarrow 2000 actuators

1630nm (SCExAO internal camera) 3 Hz sampling

SCExAO Light path

SAPHIRA camera

1.68 kHz frame rate, H-band (played at 90 Hz) SCExAO PyWFS ON → OFF

SCExAO Light path

HR8799

HR8799 Observations by J. Chilcote & T. Groff preliminary data processing by T. Brandt

1.2

1.4

CHARIS IFS

SCExAO Light path

MKIDS camera (built by UCSB for SCExAO)

Photon-counting, wavelength resolving 140x140 pixel camera

Building community RTC / Software Ecosystem to support WFC development

Provide low-latency to run control loops

→ Use mixed CPU & GPU resources, configured to RTC computer system On SCExAO, control matrix is 14,000 x 2000. Matrix-vector computed in 100us using 15% of RTC resources @ 3kHz

Portable, open source, modular, COTS hardware

- \rightarrow No closed-source driver
- \rightarrow std Linux install (no need for real-time OS)
- \rightarrow using NVIDIA GPUs, also working on FPGA use
- → All code on github: https://github.com/oguyon/AdaptiveOpticsControl

Easy for collaborators to improve/add processes

- \rightarrow Hooks to data streams in Python or C
- \rightarrow Template code, easy to adapt and implement new algorithms
- \rightarrow Provide abstraction of link between loops
- → Toolkit includes viewers, data logger, low-latency TCP transfer of streams

RTC code used at Keck, MagAO-X, OCA ...

→ community support and development

Collaboration with OCA: speckle

Speckle nulling, in the lab and on-sky (no XAO).

Experience limited by detector readout noise and speed.

KERNEL project: C-RED-ONE camera.

From:

- 114 e- RON
- 170 Hz frame rate

To:

- 0.8 e- RON
- 3500 Hz frame rate

Expect some updates

OCA/KERNEL – developed software

- Address NCPA
- Asymmetric mask (pupil)
- On-sky closed-loop control

- Focal plane based WFS Low-order (Zernike and LWE) modes.

 mode compatible with coronagraphy in development

Measuring system response matrix at 3kHz

Full speed DM modulation to measure response matrix DM motion occurs during EMCCD frame transfer 2000 modes measured in 1.33 sec @ 3kHz, 2sec @ 2kHz. Multiple cycles averaged to build up SNR

Coherent Speckle Differential Imaging

4.08e-11 8.10e-08 2.43e-07 4.85e-07 8.09e-07

Linear Dark Field Control (LDFC)

See also: Miller et al. 2017, Guyon et al. 2017 (astro-ph)

Speckle intensity in the DF are a non-linear function of wavefront errors \rightarrow current wavefront control technique uses several images (each obtained with a different DM shape) and a non-linear reconstruction algorithm (for example, Electric Field Conjugation – EFC)

Speckle intensity in the BF are linearly coupled to wavefront errors \rightarrow we have developed a new control scheme using BF light to freeze the wavefront and therefore prevent light from appearing inside the DF

December 19th, 2016

	bnorris 1:34 AM Crap! Yes sounds like it's best to leave it off. Well if you do go up be sure to look out for snow kangaroos. They're deadly.
	olivier 1:36 AM it's low probability that a significant leak would develop but I prefer to play it safe
	I'll go up in the day with DC if I can and then we can both test with the DM
	I'm in simulator software mode, so you can use the superK as you wish
	bnorris 1:38 AM Ok cool, thx. I'll turn it off when I'm done.
1	OK
1	olivier 1:45 AM I'll try (later tonight) to run the DM at reduced voltage - this should be safe and should allow enough stroke for the dmflat
	bnorris 1:49 AM ok cool
16	olivier 3:20 AM B: let me know if you need flat - I'm set it up so that is uses 80V instead of 120V. The flat may not be perfect but it's close.
	bnorris 3:21 AM It's ok for now, I don
	't need it flat at the moment.
<u>je</u>	olivier 3:21 AM OK - let me know when you need it
	December 20th 2016
	bnorris 6:13 AM Can I turn on the superk?
	olivier 7:54 AM yes I see you just did
	do you need a DM flat (I keep the DM off haven't been able to go to summit check things out)
	bnorris 7:56 AM Yeah that would be good. I'm going to stop in < 1 hr. Also was wondering about turb simulator.
	olivier 7:56 AM mmm I prefer to keep the DM off for now. Can you wait another 12hr ?
	bnorris 7:57 AM Yep sure.
1	olivier 7:57 AM OK - feel free to use bench as you need (without DM) for now. I am working on a "simulated" SCExAO for now.
	just turn off superK when done
	bnorris 7:58 AM Ok. I like the sound of the simulated scexao - let's just use that all the time, instead of the real one.
1	olivier 9:15 PM B: DM can be used safely
	nem 9:15 PM great, what was the humidity? like 2% right
	olivier 9:21 PM 14%
	a bit high, but safe
	nem 9:22 PM hmm, thats high for the vac pump being on
	olivier 9:24 PM B: let me know when you need DM flat

olivier 10:17 PM

OK - I'm keeping full control of DM until someone else screams

Using SCExAO instrument

← slack channel to coordinate instrument use over multiple continents

Conclusions

SCExAO is a flexible platform for testing and deploying new techniques (hardware, algorithms). Allows for smooth evolution from Daytime testing with internal source to nighttime on-sky validation

Coordinated development with MagAO-X (\rightarrow GMT), Keck (\rightarrow TMT), SPHERE upgrades (\rightarrow ELT), + fundamental research in WFC for space missions

Major ongoing effort to develop software ecosystem to facilitate algorithm development and test across observatories/instruments/labs.

Multiple opportunities to get involved:

Test algorithms, reduce data, new hardware, looking for exoplanets, cool project for postdoc fellowship ?

 \rightarrow talk to us

Backup slides

Data Stream Format

Uses file-mapped POSIX shared memory → multiple processes have access to data

Supports low latency IPC through semaphores \rightarrow us-level latency

Drivers written for: OCAM2k, BMC DM, SAPHIRA camera, InGaAs cameras

[process name] (same name as tmux session) aolORT : CPU set

Data flow from WFS to DM

Hardware Latency measured on SCExAO

Definition:

Time offset between **DM command issued**, and **mid-point between 2 consecutive WFS frames with largest difference**

SCExAO measured hardware latencies:

	1
	1
	1
	1

Hardware Latency measured on SCExAO

Total jitter <20us RMS = 6% of loop iteration @ 3kHz (Camera readout + TCP transfer + processing + DM electronics) Max jitter <40us

Amplitud

Synchronizing camera stream to DM (170 Hz)

6kHz DM modulation swaps between 2 diag patterns

-4e+03 -2e+03 4.9 2e+03 4e+03

Linking multiple control loops (zero point offsetting)

A control loop can offset the convergence point of another loop @> kHz (GPU or CPU) Example: speckle control, LOWFS need to offset pyramid control loop **THIS IS DONE TRANSPARENTLY FOR USER** \rightarrow don't pay attention to the diagram below !

The REAL challenge: Wavefront error (speckles)

H-band fast frame imaging (1.6 kHz)

PREVIOUS technologies

30m: SH-based system, 15cm subapertures

Limited by residual OPD errors: time lag + WFS noise kHz loop (no benefit from running faster) – same speed as 8m telescope >10kph per WFS required

Detection limit ~1e-3 at IWA, POOR AVERAGING due to crossing time

CURRENT/NEW technologies

300Hz speckle control loop (~1kHz frame rate) is optimal

Residual speckle at ~1e-6 contrast and fast \rightarrow good averaging to detection limit at ~1e-8

High Speed Speckle Control & Calibration

Wavefront Control: challenges & solutions

WFS efficiency

M stars are not very bright for ExAO \rightarrow need high efficiency WFS

For low-order modes (TT), seeing-limited (SHWFS) requires (D/r0)^2 times more light than diffraction-limited WFS

This is a **40,000x gain for 30m telescope** (assuming r0=15cm) \rightarrow 11.5 mag gain

Low latency WFC

System lag is extremely problematic \rightarrow creates "ghost" slow speckles that last crossing time Need ~200us latency (10 kHz system, or slower system + lag compensation), or multiple loops

WF chromaticity

Wavefront chromaticity is a serious concern when working at ~1e-8 contrast Visible light (~0.6 – 0.8 um) photon carry most of the WF information, but science is in near-IR

Non-common path errors

It doesn't take much to create a 1e-8 speckle !

PSF calibration

What is a speckle, what is a planet ?

Diffraction-limited pupil-plane WFS

Low or no modulation PyWFS is diffraction-limited This is a **40,000x gain for 30m telescope** (assuming r0=15cm) \rightarrow 11.5 mag gain

Fast WFC loop

Fast hardware (Cameras, GPUs) can now run loop at ~5 kHz on ELT Example: SCExAO runs 2000 actuators, 14,400 sensors at 3.5kHz using ~10% of available RTS computing power

Predictive Control

Eliminates time lag, improves sensitivity

<u>Fast speckle control</u>, enabled by new detector technologies

Addresses simultaneously non-common path errors, (most of) lag error, chromaticity, and calibration

<u>Real-time telemetry</u> → **PSF calibration**

WFS telemetry tells us where speckles are → significant gain using telemetry into post-processing

Spectral discrimination (HR)

Especially powerful at high spectral resolution

Predictive control & sensor fusion \rightarrow 100x contrast gain ? See also: Males & Guyon 2017 (astro-ph)

-8

-9 0

2

4

6

Angular separation [lambda/D]

8

10

12