## Phase-Induced Amplitude Apodization Complex Mask Coronagraphy (PIAACMC) for Large Segmented Apertures

Olivier Guyon [1,2], Brian Kern [3], Alexander Rodack [1], **Justin Knight** [1] Ruslan Belikov [4], Dan Sirbu [4], Stephen Bryson [4], Christopher Henze [4] Johanan Codona [1], Stuart Shaklan [3]

[1] Univ. of Arizona[2] Subaru Telescope[3] JPL[4] NASA Ames Research Center

Work funded by the NASA SCDA study (PI: Shaklan)

## **Scientific Motivation for small IWA**

#### **Spectroscopic characterization**

Near-IR (~ 0.7 - 2.5 um) is the most valuable spectral range for atmospheric characterization of habitable planets

**Planet diversity** Small IWA enables access to HZs

of cooler stars (smaller HZ)

#### Yield

Small IWA = large number of targets



Earth atmosphere transmittance illustrates value of near-IR

## **Our Approach: PIAACMC ... without PIAA**

We adopted APLCMC (= PIAACMC without PIAA) for convenience Pupil amplitude apodizer → Focal plane mask → Lyot stop

**Apodization loss**  $\rightarrow$  **Low throughput** (~30%), **Some loss in IWA, Larger PSF core** (FUTURE designs will use PIAA  $\rightarrow$  ~2-3x gain in efficiency expected)

Easier to design, faster numerical simulation  $\rightarrow$  rapid exploration of design optimization & trades (THIS presentation)

#### **Design process:**

(1) Design ideal monochromatic APLCMC: complete supression of on-axis light in monochromatic light, small IWA
(2) Replace ideal focal plane mask with multi-zone mask. Optimize zones for broadband light and stellar angular size.

#### For both APLCMC and PIAACMC, the multizone focal plane mask is the most critical element (Can it be manufactured ?)



Multi-zone focal plane mask. Each zone imprints an optical pathlength delay. Mutual interference between zones creates deep achromatic null. (credit: NAOJ/CNF)

## **Baseline APLCMC design**

Apodization throughput = 34.13% (Note: few % could be regained by removing circular constraint on inner and outer edges)

Outer edge intensity transmission = 4%



Focal plane mask has 1237 zones over a 3 I/D radius at central wavelength

### **Throughput & PSF quality**

# **30% throughput** at 2.5 I/D 15% throughput at **1.45 I/D = IWA**



# Clean PSF outside ~2 I/D, but ~11% wider than unapodized PSF



PSF for unapodized pupil (linear scale)

PSF for apodized pupil (linear scale)

## **PSF** is dominated by stellar angular size

PSF dominated by <u>incoherent</u> spots due to stellar angular size  $\rightarrow$  contributes to photon noise, but does not interfere coherently with wavefront errors  $\rightarrow$  can be removed in post-processing **Instead of radial average contrast, we use 50-percentile (search) and 20-percentile (spectroscopy) radial contrasts for performance evaluation: we avoid the bright spots** 

Source radius = 0.01 I/D

-11.5

-11

-10.5

-10



-9.5

Source radius = 0.03 I/D

-8.5

-7.5

-8

568 nm shown 10% bandwidth optimized

## **APLCMC design – Raw Contrast**

(20 percentile along each radius)



# How does pupil geometry affect performance ?

#### In theory...

APLCMC and PIAACMC do not care about pupil geometry. Performance should be the same for segmented and non-segmented apertures.

#### We find that ...

This holds true when considering point source, but there is a coupling between stellar angular size and segment/spiders diffraction features:

Partially resolved star + segmented aperture ← → incoherent bright "spots" and lines appear in PSF



## **Stellar Angular Size Study**

What is the impact of stellar angular size on planet characterization ?

#### **Stellar angular sizes strongly correlate with HZ angle**



#### ... and contrast



## **Spectroscopic Characterization**

Assumptions (see APLCMC design details):

- 12m aperture, 50% efficiency, 30% Airy througput, FWHM=1.11 I/D, IWA=1.45 I/D
- Exozodi has same dust density as local zodi. 3x brighter (incl + double pass). Color effects are taken into account.

Following slides quantify planet yield for spectroscopic characterization.

We assume 1 Earth-like planet around each star, and count: - # of SNR-accessible targets: stars around which an Earth analog is bright enough to be characterized assuming ALL starlight is removed (perfect coronagraph)

- # of characterizable targets: Takes into account coronagraph contrast, due to combination of stellar angular size and chromatic effects

Difference between the 2 numbers = targets lost due to coronagraph leak

#### **B band ExoEarth spectral characterization (436nm)**

Targets suitable for ExoEarth spectral characterization (B band)



#### V band ExoEarth spectral characterization (545nm)



#### I band ExoEarth spectral characterization (797nm)

Targets suitable for ExoEarth spectral characterization (I band)



#### J band ExoEarth spectral characterization (1.22um)



log10(Contrast

Angular Separation (arcsec)

#### H band ExoEarth spectral characterization (1.63um)



log10(Contrast

Angular Separation (arcsec)

#### K band ExoEarth spectral characterization (2.19um)

Targets suitable for ExoEarth spectral characterization (K band) 4.1 Detected (SNR=10, R=40 in < 24hr exposure time) Β8 -7 51 planets SNR-accessible (no starlight) 4 39 planets characterizable -8 Α5 3.9 og(Teff) F5 log10(Contrast) 3.8 -9 G5 3.7 -10 K5 3.6 M0 -11 3.5 M5 Circle size proportional to stellar angular size 3.4 -12 0.010.11

Angular Separation (arcsec)

## Fraction of light due to coronagraph leak (B band)



Fraction of light due to starlight leak

## Fraction of light due to coronagraph leak (V band)



Fraction of light due to starlight leak

## Fraction of light due to coronagraph leak (I band)





## Fraction of light due to coronagraph leak (J band)

Targets suitable for ExoEarth spectral characterization (J band)



## Fraction of light due to coronagraph leak (H band)

Targets suitable for ExoEarth spectral characterization (H band)



## Fraction of light due to coronagraph leak (K band)





## CONCLUSIONS

**APLCMC provides coronagraph solution compatible with any segmented aperture**. Throughput is low (~30%), but IWA is good (< 1.5 I/D). *Note: PIAACMC should recover throughput ... future work* 

# For most targets, coronagraphic leak due to stellar angular size has small effect on SNR

For most targets, about 20% contribution to total light in the planet PSF (other contributions: planet, zodi, exozodi)  $\rightarrow$  SNR is comparable to ideal SNR (no starlight) that a perfect coronagraph or starshade would obtain.

Stellar angular size is a concern for planets at large angular separation observed at short wavelength. APLCMC / PIAACMC is not the ideal coronagraph for these observations, but other solutions exist in this regime.

For 12m aperture, spectroscopy can be obtained on Earth-like planets around a sample of 74 stars to H-band (1.65um)

This work is funded by the NASA SCDA study (PI: Shaklan)