Panoptic Astronomical Networked Observatories for a Public Transiting Exoplanets Survey

PROJECT PANOPTES

MacArthur Foundation

PANOPTES

- PANOPTES is a low cost robotic observatory which uses commercial off the shelf (COTS) technology.
- Anyone can build a PANOPTES unit. You (Students!) can discover exoplanets!

PANOPTES GOALS

- Blend of research and outreach/citizen science.
- <u>Research</u>: Establish a world wide network of automated cameras to monitor a large fraction of the sky to detect exoplanet transits.
- <u>Outreach</u>: Enable citizen scientists and schools to participate in all aspects of the science, from data collection to data analysis.
- PANOPTES can potentially support other science (variable stars, supernovae, asteroids, etc.). We want users to come up with new projects.

LOW-COST HARDWARE

DSLR cameras

Canon Rebel DSLR (\$400-500) has 18 MP

Rokinon 85mm f/1.4 is ~\$300

ETENDUE COMPARISON

Etendue = (N units) x (collecting area) x (FOV)

	Aperture Diameter	Area	Field of View	Approximate Cost	Etendue	Etendue per \$
	(m)	(m^2)	(deg^2)	(\$)	(m^2 deg^2)	(m^2 deg^2 / M\$)
LSST	8.4	45.8	9.6	120,000,000	440.6	3.7
Pan-STARRS (PS2)	1.8	1.91	7.1	8,000,000	13.5	1.7
0.6 meter CDK	0.60	0.23	0.28	130,000	0.07	0.5
Celestron C14	0.35	0.09	0.13	40,000	0.01	0.3

ETENDUE COMPARISON

Etendue = (N units) x (collecting area) x (FOV)

	Aperture Diameter	Area	Field of View	Approximate Cost	Etendue	Etendue per \$
	(m)	(m^2)	(deg^2)	(\$)	(m^2 deg^2)	(m^2 deg^2 / M\$)
LSST	8.4	45.8	9.6	120,000,000	440.6	3.7
Pan-STARRS (PS2)	1.8	1.91	7.1	8,000,000	13.5	1.7
0.6 meter CDK	0.60	0.23	0.28	130,000	0.07	0.5
Celestron C14	0.35	0.09	0.13	40,000	0.01	0.3
Panoptes (1 camera)	0.061	0.0029	150.0	5,000	0.43	86.9
Panoptes (2 cameras)	0.061	0.0029	150.0	5,800	0.87	149.7
Panoptes (4 cameras)	0.061	0.0029	150.0	7,200	1.74	241.3

Does not account for pixel count / resolution.

Needed to demonstrate: Low Cost & reliability, high precision photometry

- Project Started in late 2010
- First prototype on Mauna Loa.
 - Canon DSLR with 85mm lens, amateur telescope mount

Cost is kept down by not using a dome

- Prototype #3
 - Four cameras co-mounted.

Comet Lovejoy and Geminid meteor - single 10 minute exposure

Orion's Belt

Orion Nebula

The Virgo Cluster of Galaxies

۴.

.

1

DSLR PHOTOMETRY

Precision photometry: Aperture photometry will not work !

Standard Deviation	4.72%	13.56%	11.24%
Average count (ADU)	5918.04	25990.6	6658.04
	R channel	G channel	B channel

Using PSF shape information to build reference PSF mitigates sampling errors

THE BASELINE UNIT

Take the lessons learned from the prototype and design a "baseline unit" which can be reproduced by non-experts

- We want <u>amateurs</u> and <u>school groups</u> to build and deploy their own units
- <u>Open source</u> hardware and software
- Goals:
 - Keep the design simple
 - Keep the cost low (\$4-5k)

HARDWARE

- Modularize the system. A PANOPTES "baseline unit" will consist of three items:
 - camera enclosure
 - mount
 - computer enclosure.
- The system becomes modular with a minimum of exposed cable runs.

CAMERA ENCLOSURE

ELECTRONICS

 Replace digital and analog i/o boards with Arduino.

"Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It's intended for artists, designers, hobbyists and anyone interested in creating interactive objects or environments."

SOFTWARE: POCS

- PANOPTES Observatory Control System (POCS)
- State machine
- Written in python
- Uses community supported code (e.g astropy)
- open source: <u>https://github.com/panoptes/POCS</u>

PAN001

PANOPTES COMMUNITY

- Our goal is to build a community of PANOPTES users
 - Get teams to help each other and continue development

- Our biggest challenges are <u>not</u> scientific, technological, or financial, they are social:
 - We need to build a social network of amateur scientists.

PANOPTES COMMUNITY

Phases:

- Design / Prototype
- Build
- Maintenance
- Data Acquisition
- Science
- ...

Areas:

- Individual Unit
- PANOPTES Network
- Project-wide

Audience:

- HS Students
- Undergrads
 - Grad Students
 - Amateur
 - Astronomers
 - Career Astronomers
 - Educators
 - Anyone

PANOPTES COMMUNITY

- Open Source / Science / Data
- Citizen Science

We must recognize that a critical feature of "citizen science" is the **enabling of amateurs to make authentic contributions** to the research topic in question: this in turn should drive us to **seek out those tasks that cannot be done by other means**.

> Marshall, Lintott, Fletcher (2015) "Ideas for Citizen Science in Astronomy" Annual Review of Astronomy and Astrophysics, 53

WHO ARE WE?

- Current team includes people based at:
 - Subaru Telescope
 - W. M. Keck Observatory
 - Macquarie University
 - NASA JPL
 - Google
 - along with our first beta testers

PARTICIPATION

- PANOPTES participation is open to all.
 - Anyone interested in participating by contributing to the social, technological, or scientific aspects of the system is encouraged to contact us.
- email: info@projectpanoptes.org
- web: <u>www.ProjectPanoptes.org</u>
- Social:
 - Google Groups: Project Panoptes
 - Google+: Project Panoptes
 - Software: <u>https://github.com/panoptes</u>