

Imaging Habitable Exoplanets with Large Groundbased Telescopes: Challenges and Opportunities

Olivier Guyon

University of Arizona

Astrobiology Center, National Institutes for Natural Sciences (NINS)

Subaru Telescope, National Astronomical Observatory of Japan (NINS)

University of Washington, May 3, 2017

What is so special about M stars ?

They are **<u>abundant</u>**: >75% of main sequence stars are M type

Class	Effective temperature ^{[1][2][3]}	Vega-relative "color label" ^{[4][nb 1]}	Chromaticity ^{[5][6][7][nb 2]}	Main-sequence mass ^{[1][8]} (solar masses)	Main-sequence radius ^{[1][8]} (solar radii)	Main-sequence luminosity ^{[1][8]} (bolometric)	Hydrogen lines	Fraction of all main-sequence stars ^[9]
0	≥ 30,000 K	blue	blue	≥ 16 <i>M</i> _☉	≥ 6.6 <i>R</i> _☉	≥ 30,000 <i>L</i> _☉	Weak	~0.00003%
В	10,000–30,000 K	blue white	deep blue white	2.1–16 <i>M</i> _☉	1.8–6.6 R _☉	25–30,000 L _☉	Medium	0.13%
Α	7,500–10,000 K	white	blue white	1.4–2.1 M _☉	1.4–1.8 R _☉	5–25 L _☉	Strong	0.6%
F	6,000–7,500 K	yellow white	white	1.04–1.4 <i>M</i> _☉	1.15–1.4 <i>R</i> ⊙	1.5–5 <i>L</i> ⊙	Medium	3%
G	5,200–6,000 K	yellow	yellowish white	0.8–1.04 <i>M</i> _☉	0.96–1.15 R _☉	0.6–1.5 <i>L</i> ⊙	Weak	7.6%
К	3,700–5,200 K	orange	pale yellow orange	0.45–0.8 <i>M</i> ⊙	0.7–0.96 R ⊙	0.08–0.6 L _☉	Very weak	12.1%
м	2,400–3,700 K	red	light orange red	0.08–0.45 M _☉	≤ 0.7 <i>R</i> ⊙	≤ 0.08 <i>L</i> _☉	Very weak	76.45%

Within 5pc (15ly): 60 hydrogen-burning stars, 50 are M type, 6 are K-type, 4 are A, F or G

What is so special about M stars ?

Strong evidence that their systems are **<u>rich in terrestrial planets</u>**:

- Planet formation models evidence
- Lack of giant planets near HZ \rightarrow good thing !
- Kepler data shows trend : more rocky planets around M-type stars
- Recent discoveries: Prox Cen b Trappist-1

What is so special about M stars ?

"Easy" to observe

- Strong RV signal (near-IR RV instruments coming online)
- Moderate contrast (this talk): good for direct imaging
- Excellent transit targets:
 - Larg(er) probability of transit: some hope for transit+RV+direct imaging
 - Larger transit depth: JWST transit spectroscopy

Why directly imaging ?

Spectra can also be obtained by transit, but :

- Low probability (few %)
- High atmosphere only

Spectra of Earth (taken by looking at Earthshine) shows evidence for life and plants

Taking images of exoplanets: Why is it hard ?

† Earth

Contrast and Angular separation

Contrast and Angular separation (updated)

Habitable Zones within 5 pc (16 ly): Astrometry and RV Signal Amplitudes for Earth Analogs

Star Temperature [K]

Contrast and Angular separation

We need a Coronagraph ...

Requirements ...

- IWA near 1 I/D
- high throughput (>~50% @ 2 I/D)
- ~1e-6 raw contrast
- resilient against stellar angular size (ELTs partially resolve stars)

... can be met <u>now</u>

At least two approaches meet requirements: Vortex, PIAACMC Performance demonstrated in lab on centrally obscured pupil (WFIRST) in visible light. Designs for segmented apertures have been produced (see next slides) but not tested.

No component-level significant challenge, but system-level performance has yet to be demonstrated on-sky

Coronagraphy ... Using optics tricks to remove starlight (without removing planet light)

← Olivier's thumb...
 the easiest coronagraph
 Doesn't work well enough to
 see planets around other stars

We need a better coronagraph... and a larger eye (telescope)

Water waves diffract around obstacles, edges, and so does light

Waves diffracted by coastline and islands

Ideal image of a distant star by a telescope Diffraction rings around the image core

PIAACMC focal plane mask manufacturing

← SCExAO focal plane mask (Mar 2017)

mag m curr det _____40 µm _____

Focal plane mask manufactured at JPL's MDL Meets performance requirements (WFIRST PIAACMC Milestone report)

PIAACMC lab performance @ WFIRST (Kern et al. 2016)

Operates at 1e-7 contrast, 1.3 I/D IWA, 70% throughput Visible light

non-coronagraphic PSF

Remapped pupil

Coronagraphic image

1.04e-07 3.59e-07 1.04e-06 2.82e-06 7.58e-06 2.00e-05 5.28e-05 1.40e-04 3.70e-04

TMT coronagraph design for 1 I/D IWA

What about speckles ?

H-band fast frame imaging (1.6 kHz)

PREVIOUS technologies

30m: SH-based system, 15cm subapertures

Limited by residual OPD errors: time lag + WFS noise kHz loop (no benefit from running faster) – same speed as 8m telescope >10kph per WFS required

Detection limit ~1e-3 at IWA, POOR AVERAGING due to crossing time

Nominal ELT ExAO system architecture

Wavefront Control: challenges ... and solutions

[1] High-efficiency WFS

M stars are not very bright for ExAO \rightarrow need high efficiency WFS

For low-order modes (TT), seeing-limited (SHWFS) requires (D/r0)^2 times more light than diffraction-limited WFS (Pyramid)

This is a 40,000x gain for 30m telescope (assuming r0=15cm) \rightarrow 11.5 mag gain

[2] Low latency WFC (High-speed WFS + predictive control)

System lag is extremely problematic \rightarrow creates "ghost" slow speckles that last crossing time Need ~200us latency (10 kHz system, or slower system + lag compensation) Predictive control is essential

[3] Managing chromaticity: Multi-wavelength WFC / LOWFS, closed loop ADC

Wavefront chromaticity is a serious concern when working at $\sim 1e-8$ contrast Visible light ($\sim 0.6 - 0.8$ um) photon carry most of the WF information, but science is in near-IR

[4] Fast speckle control, enabled by new detector technologies

Addresses non-common path errors It doesn't take much to create a 1e-8 speckle !

[5] Real-time telemetry → PSF calibration

WFS telemetry tells us where speckles are \rightarrow significant gain using telemetry into post-processing

Predictive control → **100x contrast gain**

Angular separation [lambda/D]

Coherent Speckle Differential Imaging

^{4.08}e-11 8.10e-08 2.43e-07 4.85e-07 8.09e-07

Speckle control → remove speckles in ½ field dark hole

Linear Dark Field Control (LDFC)

Speckle intensity in the DF are a non-linear function of wavefront errors \rightarrow current wavefront control technique uses several images (each obtained with a different DM shape) and a non-linear reconstruction algorithm (for example, Electric Field Conjugation – EFC)

Speckle intensity in the BF are linearly coupled to wavefront errors \rightarrow we have developed a new control scheme using BF light to freeze the wavefront and therefore prevent light from appearing inside the DF

CURRENT technologies

300Hz speckle control loop (~1kHz frame rate) is optimal

Residual speckle at ~1e-6 contrast and fast \rightarrow good averaging to detection limit at ~1e-8

Key technologies need rapid maturation from paper concepts to system integration

paper concept	Lab demo	on-sky operation				
		erformance coronagra diffraction-limited				
Ontine da	multi-lambda WFS Atmospheric speckle co	LOWFS	SYSTEM INTEGRATION			
Real-time WFS	Optimal predictive control eal-time WFS → PSF calibration Coherent differential imaging					
Linear Dark I	High spectral R template Field Control	matching				

Subaru Coronagraphic **Extreme Adaptive Optics**

- Flexible high contrast imaging platform
- Meant to evolve to TMT instrument and validate key technologies required for direct imaging and spectroscopy of habitable exoplanets

Core system funded by Japan

Modules/instruments funded by Japan + international partners:

- IFS funded by Japan, built by Princeton Univ
- MKIDs funded by Japan, built by UCSC
- SAPHIRA camera provided by UH
- VAMPIRES instrument funded and built by Australia
- FIRST instrument funded and built by Europe

SCExAO is an international platform to prepare ELT imaging of habitable planets around M-type stars

Modules

The wavefront control feeds a high Strehl PSF to various modules, from 600 nm to K band.

Visible (600 - 950 nm):

VAMPIRES, non-redundant masking, polarimetry, with spectral differential imaging capability (h-alpha, SII)

FIRST, non-redundant remapping interferometer, with spectroscopic analysis

RHEA, single mode fiber injection, high-res spectroscopy, high-spatial resolution on resolved stars

IR (950-2400 nm):

HiCIAO - high contrast image (y to K-band)

SAPHIRA - high-speed photon counting imager, (H-band for now)

CHARIS - IFS (J to K-band)

MEC - MKIDs detector, high-speed, energy discriminating photon counting imager (y to J-band)

NIR single mode injection, high throughput high resolution spectroscopy. Soon will be connected to the new IRD

Various small IWA (1-3 I/D) coronagraphs for high contrast imaging – PIAA, vector vortex, 80PM

GLINT - NIR nulling interferometer based on photonics

Jovanovic et al, PASP, 127, 890 (2015)

CEAC Subaru Coronagraphic Extreme Adaptive Optics

CEAP Subaru Coronagraphic Extreme Adaptive Optics

+ experimental photopies cheetro

CENER Subaru Coronagraphic Extreme Adaptive Optics

Subaru Coronagraphic Extreme Adaptive Optics

Measured photon efficiency (SCExAO, sub-I/D modulation pyramid)

speckle nulling results on-sky (June 2014)

Single frames: 50 us

Meta data: Date: 2nd or June Target: RX Boo (also repeated on Vega) Seeing: <0.6" AO correction: 0.06" post-AO corrected in H- band (0.04" is diffraction-limit) Coronagraph: None (used Vortex on Vega)

Sum of 5000 frames: shift and add

Martinache. et. al.

SAPHIRA Infrared APD array

HgCdTe avalanche photodiode manufactured by Selex

<u>Specifications</u> 320 x 256 x 24µm 32 outputs 5 MHz/Pix

50 frame average

High speed speckle modulation

1.6 kHz frame rate, H-band (played at 30 Hz)

Electron-injector nearIR camera (Northwestern Univ / Keck foundation)

MKIDS camera (built by UCSB for SCExAO)

Photon-counting, wavelength resolving 100x200 pixel camera

Pixels are microwave resonators at ~100mK photon hits \rightarrow resonator frequency changes

Delivery to SCExAO in CY2017

From Subaru to TMT

Demonstrate and validate performance on Subaru prior to deployment on TMT

→ ready to go as first light visitor instrument, well understood

→ mitigates risks, minimizes need for engineering time on TMT

 \rightarrow **benefits from yrs of experience** on Subaru (loop control, data reduction algorithms, observing strategy)

 \rightarrow Subaru provides path to quickly and safely integrate/validate new technologies prior to instrument deployment on TMT

Open international effort engaging TMT partners. Expected overlap with development team of 2nd generation, more capable ExAO system. Reuse experience/technologies and possibly hardware to reduce schedule/cost/risk of 2nd generation instrument.

Current PSF stability @ SCExAO

Highly stable PSF for coronagraphy SCExAO provides sensing and correction at 3.5 kHz

1630nm (SCExAO internal camera) 3 Hz sampling

Preliminary VAMPIRES science

Diffraction-limited imaging in visible light

Preliminary VAMPIRES science

AB Aur star, polarimetric imaging mode

HiCIAO, near-IR

VAMPIRES (preliminary data reduction)

Preliminary VAMPIRES science

Circumstellar dust around Red Supergiant µ Cephei

Model-fitting reveals extended, asymmetric dust shell, originating within the outer stellar atmosphere, without a visible cavity. Such low-altitude dust (likely Al₂O₃) important for unexplained extension of RSG atmospheres.

Inner radius: 9.3 ± 0.2 mas (which is roughly R_{star}) Scattered-light fraction: 0.081 ± 0.002 PA of major axis: 28 ± 3.7 ° • Aspect ratio: 1.24 ± 0.03

Left: model image, shown in polarized intensity. **Middle:** model image show in four polarisations. **Right:** Model image (intensity), shown with wide field MIR image (from de Wit et al. 2008 – green box shows relative scales. Axis of extension in MIR image aligns with the close-in

VAMPIRES image.

X position (mas)

X position (mas

arcsed

Neptune with CHARIS + SCExAO

CHARIS – early data on HD1160 and HR8799

 HD1160 easily visible in the speckle halo with a basic data reduction thanks to large wavelength range

 HR8799 c,d,e easily extracted with ADI+SDI.

• SNR of 70, 35 and 15

Images and movie courtesy of Tim Brandt

Post-Coronagraphic spectroscopy

Aim: Detection of atmospheric molecules and planetary radial velocity using post-coronagraphic high-dispersion spectroscopy

Conclusions

- Low-hanging fruits (Prox Cen B !) can be imaged on ELTs with <u>current</u> technology (... possible even with VLT with high resolution spectroscopy)
- ELTs can probably operate at ~1e-5/1e-6 raw contrast and photon-noise limited detection limit
- → characterization (spectroscopy) of 1e-8 habitable planets accessible around >100 nearby stars, mainly near-IR/visible

Near-complete sample of M0-M5 stars within 5pc

- BUT: ELTs intrument development process is slow compared to the pace of science in technology progress in our field
- → Schedule for (near-)first light instrument on ELT is very challenging
- (No "extreme-AO" currently planned as ELT 1st generation instrument)