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Habitable zone of a star

Habitable Enne: :
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What makes planets habitable ?

The planet must be in the habitable zone of its star: not be
too close or too far
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Venera 13 lander, survived 127mn at 457 C, 89 atm

Venus: too close, too hot

Mars: too far, too cold



What makes planets habitable ?

Size matters:
not too big, not too small

Moon: too small Earth
No atmosphere

Jupiter: too big
Mostly gas



lots of planets, ~>10% of stars have potentially habitable planets

Planetary Radius (Rjup)

= o % r~ o | = w [==] — ] I=]
[=1 [=1 [=1 =] = = - i - o o =
B
_.E._I._I.I_F_Eh_l._rnl.n_-l.__..tl_ 1 | .| [ 10 | LILLLL 0 | 1
t L ] ) MR T & 3 L ] . Re 1 BN ]
-nﬂlrnlni!i. seTemm e e we( T .
L L e Lt T SR
= .m ® [ BB (IEmEw is Ioy L ]
m-l (MEVEY ®EI" T T»BMMN T NI DM
4. w.-.!.lill OO T e - . e
o mrl SEDNIS GUINES @ 6 5 SGE IS8 @
4¢ T e Dememsacoms ee . e e
H -e) MM B eI L] L | L
= [ ] (o 1 DeEe N Nar !l ]
[ e | F BN " » @ 80 - L T ]
- - » mam o cree. & 8 ®
(It I IX] L]
= [ R N N I [ B 1] [ B |
L ] - B [ X N BN N
4 ee e smemsem s 0
L] L (NN
= - . ae . [ ]
= [ ] [ | [ N ] [ 1 ]
&
- [ ]
L |
_____l._ errre I merrre 11 merrr e ) mrrreru rrrera 1
3 2 R 2 7
ks 3 4 4 4

(dnlwy) ssew feaue|d

1530 1982 1554 19596 1943 2000 2002 2004 2006 2008 2010 2012 2014 2016

1368

Year of Discovery (year)



4
L
®
(@)
—
-
O
=
7))
|-
®
o
)
-
O
.m
o
Q
7




~300 bhillion stars in our galaxy

| ~30 bl|||0n habntable planets
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How do astronomers identify exoplanets ?

HIGH PRECISION OPTICAL MEASUREMENTS OF
STARLIGHT (indirect techniques)

Earth around Sun at ~30 light year

— Star position moves by 0.3 micro arcsecond
(thickness of a human hair at 20,000 miles)

— Star velocity is modulated by 10cm / sec
(changes light frequency by 1 part in 3,000,000,000)

If Earth-like planet passes in front of Sun-like star, star dims by
70 parts per million
(12x12 pixel going dark on a HD TV screen 70 miles away)



Exoplanet transit

If the planet passes in front of its star, we see the star dimming slightly

Transit of Venus, June 2012







Directly imaging planet is necessary to

find life - TRERee
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We need to take spectra of
habitable planets
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Spectroscopic characterization of Earth-sized planets with

ELTs
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11 | Space-based ultra-high contrast Sl
instrument(s) will image and ]
characterize Earth-like planets
around Sun-like stars

2

Angular éepara’tion’-(loglo arcse_c)

Around about 50 stars (M type),
rocky planets in habitable zone
could be imaged and their
spectra acquired

[ assumes 1le-8 contrast limit, 1
IID IWA ]

K-type and nearest G-type stars
are more challenging, but could
be accessible if raw contrast can
be pushed to ~1e-7 (models tell
us it's possible)
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Habitable Zones within 5 pc (16 ly)
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Indirect detection techniques — mass

Astrometry

Radial Velocity

HOST STAR

EXOPLANET

The Radial Velocity Method

ESO Press Photo 22e/07 (25 April 2007)

nnection with an ESO press release and may be used by the press on the condition that the source is clearly indicated in the caption.

je is copyright © ESO. It s relea



Habitable Zones within 5 pc (16 ly):
Astrometry and RV Signal Amplitudes for Earth Analogs
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HR8799

Four planets, orbital periods on the order of 100yr
Each planet 5 to 7 Jupiter Mass

Keck telescope image (Marois et. al)

Size of Pluto’s Orbit

| |
I 1

2000 Astronomical Units
(1 AU = Earth-Sun Distance)

Debris Disk around Star HR 8799
Spitzer Space Telescope * MIPS

NASA / JPL-Caltech / K. Su (Univ. of Arizona) sig09-008




Taking images of exoplanets: Why is it hard ?




Earth




Exciting future opportunities

Next generation of large telescopes on the ground will be able to image
habitable planets around nearby low mass red stars
3 projects, ~30m diameter

Space telescopes with coronagraphs will be able to image and study Earth-
like planets around sun-like stars




Giant Magellan Telescope




Coronagraphy ... Using optics tricks to remove
starlight (without removing planet light)

< Olivier's thumb...

the easiest coronagraph
Doesn't work well enough to
see planets around other stars

We need a better coronagraph... and a larger eye (telescope)



Coronagraphy

Key coronagraph requirements :
- IWAnear 1 1/D

- high throughput

- ~1e-5 raw contrast

- resilient against stellar angular size (ELTs partially resolve stars)

26



Water waves diffract around obstacles,
edges, and so does light

Waves diffracted by coastline and islands

Ideal image of a distant star by a telescope
Diffraction rings around the image core



GMT coronagraph design

PIAACMC architecture:

lossless apodization with aspheric mirrors

PIAA M2

multi-zone focal plane mask PTAA M1

60% throughput
IWA=1.3I/D

optimized for 10% wide band and stellar angular size



(largely) lossless apodization Lyot stop

Creates a PSF with weak Airy rings Blocks starlight
Focal plane mask: -1<t<0 Inverse PIAA (optional)
Induces destructive interference Recovers Airy PSF over wide field

Phase Induced Amplitude Apodized Complex Mask Coronagraph (PIAACMC)

ossess apodization Conventiok

with remapping apodizer Phase-shifting
optics (PIAA) (optional) partially ) Science

/\ Y

transmissive circuls focal plane
focal plane mask




Focal plane mask

583 zones
SiO2 (transmissive)
+/- 3 um sag

Optimized for 10% band,
partially resolved source




PIAACMC focal plane mask manufacturing

200 ,
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Focal plane mask manufactured at JPL's MDL —300 Lit ;
Meets performance requirements -40 -30 -20 -10 O 10 20 30 40

(WFIRST PIAACMC Milestone report,

~ Tilted walls of
| 200 nm pixels




PIAACMC lab performance @ WFIRST
(Kern et al. 2016)

Operates at 1e-7 contrast, 1.3 I/D IWA
Visible light

non-coronagraphic PSF Remapped pupil Coronagraphic image

-F r " !
B e







0.015 0.06 0.14 0.24 0.38 0.54 0.73 0.96 1.2



Performance

le-7 contrast (top: point source)
3e-6 contrast @ 3 I/D for 6% |I/D disk (bottom)

0.7

60% throughput -

0B

76 7.2 6.8 -6.4 -6 56 5.2 48 -44

RN

0.4 F

Throughput.

0.2

02 F

oip IWA=131/D

0 1 2 3 4 b
Argular separation [1/0]

7.6 -71.2 -6.8 -64 -6 56 -52 -48 -44



WFC architecture
game-changers

[1] High-efficiency WFS

M stars are not very bright for EXAO — need high efficiency WFS

For low-order modes (TT), seeing-limited (SHWEFS) requires (D/r0)*2 times more light than
diffraction-limited WFS (Pyramid)

This is a 40,000x gain for 30m telescope (assuming rO=15cm) — 11.5 mag gain

[2] Low latency WFC (High-speed WFS + predictive control)

System lag is extremely problematic — creates “ghost” slow speckles that last crossing time
Need ~200us latency (10 kHz system, or slower system + lag compensation)

Predictive control is essential

[3] Managing chromaticity: Multi-wavelength WFC | LOWFS, closed loop ADC
Wavefront chromaticity is a serious concern when working at ~1e-8 contrast
Visible light (~0.6 — 0.8 um) photon carry most of the WF information, but science is in near-IR

[4] Fast speckle control, enabled by new detector technologies
Addresses non-common path errors
It doesn't take much to create a 1e-8 speckle !

[5] Real-time telemetry — PSF calibration
WES telemetry tells us where speckles are — significant gain using telemetry into post-
processing



WFC: Contrast limits

Assumptions:

|l mag =8 (WFS — 100 targets)
H mag = 6 (Science)

Noiseless detectors

1.3 I/D IWA coronagraph

30% system efficiency

40% bandwidth in both WFS and science

Time lag = 1.5 WFS frames

Mauna Kea “median” atmosphere



logl0 contrast

30m: SH-based system, 15cm subapertures

[:I T T
Residual Phase errors ———
Residual Amplitude errors ————
Fhase propagation chromaticity ———
Amplitude propagation chromaticity ———
Refractive index chromaticity aptical WFS effective frame rate [kHz]
TOTAL RAW CONTRAST 1000 L optical WFS flux per frame [kph] ——— |
1hr DETECTION LIMIT (Ssigma)
. W LON MOISE LIMIT (5SI0ma)  se—
100
-B J
\ o
|
_S i 1
0 0.65 Ofl O.ill_5 OT2
Angular separation [arcsec]
_1|:| 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25

Angular separation [arcsec]

Limited by residual OPD errors: time lag + WFS noise
kHz loop (no benefit from running faster) — same speed as 8m telescope
>10kph per WFS required

Detection limit ~1e-3 at IWA, POOR AVERAGING due to crossing time

0.25



logl0 contrast

[1+2] 30m: Pyramid-based system

opti'cal WFS effective frame rate [kHz]
optical WFS flux per frame [kph] ——— |

—

[:I T T
Residual Fhase errors ———
Residual Amplitude errors ———
Fhase propagation chromaticity ———
oL Amplitude propagation chromaticity ——— | 1000
Refractive index chromaticity 1
TOTAL RAW CONTRAST  ——
1hr DETECTION LIMIT (Ssigma)
1hr PHOTON MNOISE LIMIT (55i0Ma)  s—
-4+ 1 100 ¢t
“—\—\_\_\_\_\_\—__\_\_\—;_-
'6 - \\x——ﬁ\_ -1 10 +
-8 t ; | Ll
0
_1[] 1 1 1 1
Q 0.05 0.1 0.15 0.2 0.25

Angular separation [arcsec]

0.05 01 015 0.2 0.25

Angular separation [arcsec]

More sensitive WFS, can run faster (10kHz) with ~10 kph per WES frame

Limited by atmosphere chromaticity

~((D/CPA)/r0)"2 flux gain: ~10,000x in flux = 10 mag near IWA
Sensitivity now equivalent to | mag = -2 with SHWFS



logl0 contrast

[1+2+3+4] 30m: Pyramid-based system +
speckle control afterburner

[:I T T
Residual Phase errors ————
Residual Amplitude errors —
Fhase propagation chromaticity ——— optical WF'S effective frame rate [kHz] ——
5l Amplitude propagation chromaticity ——— | 1099 | I e e
Refractive index chromaticity nearlR WFS flux per frame per speckle [ph] ———
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1hr DETECTION LIMIT (Ssigma) 100 |
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10 ¢
h—
6 | = ) _
0.1 : : ; :
B L 0 0.05 01 015 0.2 0.25
e
Angular separation [arcsec]
_1|:| 1 1 1 _,—n—'—'_‘_'—/_/_'_/_'_‘_'_
0 0.05 0.1 015 0.2 0.25

Angular separation [arcsec]
300Hz speckle control loop (~1kHz frame rate) is optimal

Residual speckle at ~1e-6 contrast and fast — good averaging to detection limit at ~1e-8



Detection limit ultimately constrained by RAW contrast (photon noise)
— predictive control can push performance deeper

Optimal linear predictive control
(model-free, uses Empirical Orthogonal Functions)

... what dumb people do with fast computers

Collect LOTS of data, and then find the multi-dimentional AR filter that best reproduce
current measurement as a function of past measurements
(best = least square)

Computationally very intensive: need pseudo-inverse of data matrix
Data matrix size: # of time steps (60,000 for 1kHz system, 1mn telemetry) x # of AR filter
coefficient (10,000 for 1000 modes, 10-step prediction)

Current WF (~1000 modes) = Prediction coefficients (10,000,000 coefficients) x past
measurements (10,000 values)



X position [mas]

T T T T
Current measurement (X acceleration), includes 4 ms time lag

Current measurement (.mmc-n) includes 3 ms time lag
i o True position
Predicted value

Mésurement, é ms time Iac|;| )
1Y True position 8
. . Predicted position

Y position [mas]

X position [mas]

Fic. 3.— Top left: 2D-tracks for true pointing (red), predicted pointing (blue) and last measured position (green). Top right: Residual
pointing error. Bottom: Single axis (x) values.

Y residual [mas]

1.2

1 1
No correction
Current measured position residual, includes 3 ms time lag
Lag-compensated measured position residual
Predicted position residual

X residual [mas]
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Fic. 4.— Top left: 2D-tracks for true pointing (red), predicted pointing (blue) and last measured position (green). Top right: Residual
pointing error. Bottom: Single axis (x) values.



Optimal linear predictive control - 8m telescope
(model-free, uses Empirical Orthogonal Functions)

Optimal control of 400 zonal actuators
1mn training set — controller
(rolling average of 10 last controllers)

8m telescope
mag 8 source (R band)
1kHz sampling + 2ms lag

Photon-noise limited sensor Integrator : RMS = 214 nm (gain = 1)

10% efficiency, 20% bandwidth 10-st diction: RMS = 30.5
r0 = 20cm at 0.6um - 21 rad WFE RMS Step prediction: 5 nm

7 layer turbulence, most power between 6 and 22 m/s

System dominated by time lag (214nm error)
WEFES noise small (9nm RMS over first 400 low-order modes)




Benefits & challenges

Lower wavefront error (30nm vs. >200nm) Computation requirements:

Raw contrast improvement: ~100x gain SVD of 60000x4000 dense matrix in <1mn

already met on single GTX980M GPU (lapto
Relaxed speed requirement y g (laptop)

contrast corresponds to 10 kHz WFS lag

) few 1000s modes @ few kHz can be done on
- 10x speed gain

current hardware

Smoother PSF halo
slow speckles are GONE

1hr detection limit
(PSF subtraction residual)

-1 T T T T -3 T T — T
coronagraph, predictive filter order 1 m—— Coégpoigagrp;p;hprggg:xz E:Eg grrggé —
coronagraph, prective filter order 3 s— 2 Pr : —
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5 |
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@ 3 F 1 g
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g S 6 | |
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k=] 71 i
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© : ' : ) ) 0 2 4 6 8 10 12

0 2 4 6 8 10 12

) Angular separation [lambda/D]
Angular separation [lambda/D]



Differential detection
game-changers

[1] High spectral resolution template matching
100x — 1000x gain (photon-noise permitting)

[2] Coherent differential imaging
10-100x gain ?

[3] Linear Dark field speckles control
10-100x gain ?
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Coherent Speckle Differential Imaging
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Bright field speckles in %% field dark hole
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Linear Dark Field Control (LDFC)

Speckle intensity in the DF are a non-linear function of wavefront errors

— current wavefront control technique uses several images (each obtained with a
different DM shape) and a non-linear reconstruction algorithm (for example, Electric
Field Conjugation — EFC)

Speckle intensity in the BF are linearly coupled to wavefront errors — we have
developed a new control scheme using BF light to freeze the wavefront and
therefore prevent light from appearing inside the DF

dark field (DF)
speckles

HCIT PIAA images

Igh contrast spectral range
Hﬂm nm 830 nm



Example system architecture with
. :

Visible light

INSTRUMENTATION

High-res spectroscopy can
Near-IR detect molecular species and

Imaging, Imaging, separate speckles from planet
Thermal IR spectroscopy, spectroscopy, spectra
Imaging & polarimetry, polarimetry
spectroscopy coronagraphy

J

Speckle control
afterburner WFS

Woofer DM,

~2 kHz speed

120 x 120 actuators
Delivers visible
diffraction-limited PSF
to visible WFS

Tweeter DM
10kHz response
50x50 actuators
Provides high
contrast

Low-IWA
coronagraph
High efficiency

Speed ~kHz
Photon-counting
detector

WFS

pointing Coronagraphic Low-order

WFS uses light rejected by
coronagraph

TT, focus?

— catches aberrations
BEFORE they hurt contrast

- stellar leakage derived from
telemetry

Visible light low-latency WFS
Diffraction limited sensitivity




Canwedoit?

GPIl, SPHERE operate at ~1e-6 contrast at >0.3 arcsec separation, fall short of
goal, but current technologies exist to meet requirements.

However, most of what we need has never been tested on sky and integrated
into a system - this is what we need to do NOW on current large telescopes

It takes yrs of hard work to put all of this together, learn what works, and optimize
algorithms / designs (including data reduction) srototvpes to ELT svstems
SCEXAO program on Subaru is technology development platform to mature

techniques and system for ELTs

MagAO-X plays similar role on Magellan. Strong collaboration between the two
projects (technology transfer, shared algorithms/software)

Focused efforts on Palomar & Keck validate key technologies (Vortex coronagraphy,
LOWEFS, HR template matching)

Lab efforts @ UofA, Caltech, JPL, Princeton, Stanford




Subaru Coronagraphic
Extreme Adaptive Optics
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SCExAO/Subaru - TMT




CHARIS

Near-IR nuller

HiCIAO or MKIDS

Near-IR InGaAs
cameras
— to be replaced wi

El technology

SAPHIRA
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Deformable
Coronagraphs mirror




How SCEXAO achieves high contrast

Gas'supply lines

(1) Small IWA, high throughput
Coronagraphy

— removes diffraction (Airy rings), transmits r>1 I/D
region

(2) Extreme-AO with fast diffraction-
limited WFS

— removes wavefront errors

(3) Near-IR LOWFS

— keeps star centered on coronagraph and controls
Focus, Astig, etc..

— records residual WF errors to help process data

(4) Fast Near-IR Speckle control
— modulates, removes and calibrates residual
speckles

Requires fast low-noise detectors
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Speckle nulling on-sky



Subaru Coronagraphic

Extreme Adaptive Optics

Measures aberrations .

Extreme-AQO CORONAGRAPHIC :

LOOP LOW ORDER LOOP : E
High speed pyramid 10-200 Hz Near-IR camera
wavefront sensor pELERLEEELLEELLE Measures low-order :

aberrations

. 800 - 2500 nm . .
3.7kHz : (rejected by -
. coronagraph) a .
£ MKIDs camera :
n -
. o
: § coronagraph 800 1350 nm@l Measures residual .
é system starlight
Y removes starlight
Facility Adaptive 2000 actuator >800n SPECKLE -
Optics system Deformable .
| Defor CONTROL LOOP
Sharpens image :
CHARIS spectrograph
Visible light instruments Near-IR instruments Exoplanet spectra
VAMPIRES, FIRST, RHEA Nuller, HICIAO, IRD Slow speckle calibration




SCEAO Subaru Coronagraphic

Low latency WFC in visible light at Extreme Adaptive Optics
the diffraction limit sensitivity

2000 actuators MEMs DM running at 3.6 kHz
deep depletion EMCCD

Non-modulated pyramid WFS cannot rely on slope computations
- full WES image is multiplied by control matrix

One of two GPU chassis
Now delivering 90% SR in H

Recent upgrade allows 3.6kHz loop
operation with zonal and modal
reconstruction

- low-latency control

— modal reconstruction for predictive /
LQG control (under development)

SCEXAO uses 30,000 cores
running @1.3GHz




Current PSF stability @ SCExXAO

1630nm (SCEXAO internal camera)
3 Hz sampling

725nm (VAMPIRES camera)
55 Hz sampling (bottom)
co-added (right)

SCExAOQO/VAMPIRES PSF at 725nm, t‘m=18ms (HD 19820, V=7, Sept2016)

-150
-100

-50

50

Milli-arcseconds

100

150

150 -100 -50 O 50 100 150 .
Milli-arcseconds -0 39 119 277 595 1225 2479 5009 10014

Current issues :
- residual vibration — dedicated TT loop, accelerometers on telescope60
- occasional DM edge “flaring” — filtering in control loop



Preliminary VAMPIRES science

Circumstellar dust around Red Supergiant u Cephei

Model-fitting reveals extended, asymmetric dust shell, originating within the outer stellar
atmosphere, without a visible cavity. Such low-altitude dust (likely Al,O,) important for

unexplained extension of RSG atmospheres.

Inner radius: 9.3 = 0.2 mas (which is roughly R.,.,)

Scattered-light fraction: 0.081 %= 0.002
PA of major axis: 28 = 3.7 ° » Aspect ratio: 1.24 = 0.03

Left: model image, shown in polarized intensity. Middle: model image
show in four polarisations. Right: Model image (intensity), shown with
wide field MIR image (from de Wit et al. 2008 - green box shows
relative scales. Axis of extension in MIR image aligns with the close-in

VAMPIRES image. ?
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Neptune with CHARIS + SCEXAO

1173.3 nm 1323.6 nm 1493.2 nm

L] -

1684.4 nm 1900.2 nm 2143.5 nm
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CHARIS data cube @ SCExAO

Calibration speckle
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Residuals (nm)
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Managing chromaticity

LLOWFS closing loop on first ten Zernike modes with Vortex on SCExAO instrument (March 2015) \ ' ,/
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Near-IR low-order coronagraphic WFC
(Singh et al. 2015)

Closed loop atmospheric dispersion compensation
(Pathak et al. 201@20 6




Systematically removing speckles

Typical SCExXAQO PSF

Presence of static & slow-
varying aberrations in the
path of science camera sets
contrast limit at present

Spatial frequency in pupil Matching speckles in the image




speckle nulling results on-sky (June 2014)

Meta data:
Date: 2" or June
Target: RX Boo (also repeated on
Vega)
Seeing: <0.6”
AO correction: 0.06” post-AO
corrected in H- band (0.04” is
diffraction-limit)
Coronagraph: None (used Vortex on
Vega)

Sum of 5000 frames: shift and add fliiigeie et 2l




SAPHIRA Infrared APD array

HgCdTe avalanche photodiode
manufactured by Selex

Specifications

320 x 256 x 24um e =
32 OUtpUtS e _." SassssdadERRRRRR
5 MHz/Pix “.“; @ M




MKIDS camera (built by UCSB for SCExXAO)

Photon-counting, wavelength resolving 100x200 pixel camera

Photon-counting near-IR MKIDs

: : 77 camera for kHz speed speckle

photon hits = resonator frequency changes 5 ; UCSB

Delivery to SCEXAO in CY2017




Electron-injector nearlR camera
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1 AID 1 .Y») Around about 50 stars (M type),
+L : A=1600nm A=1600nm rocky planets in habitable zone
DY Swaanst _ _ could be imaged and their
D= ;30m D - 8m spectra acquired
[ assumes 1e-8 contrast limit, 1
IID IWA ]

=,

M-type stars
R LA ) K-type and nearest G-type stars
are more challenging, but could
be accessible if raw contrast can
be pushed to ~1e-7 (models tell

-8 us it's possible)
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Key technologies are rapidly advancing from paper
concepts to system integration

paper concept Lab demo on-sky operation




Direct imaging with ELTs -
Conclusions

Low-hanging fruits (Prox Cen B) can be imaged on ELTs with
current technology

ELTs can probably operate at ~1e-5/1e-6 raw contrast and photon-
noise limited detection limit

— characterization (spectroscopy) of 1e-8 habitable planets
accessible around >100 nearby stars, mainly near-IR/visible

Aggressive technology validation and system level testing Is
ongoing, aligned with (near-)first light deployment



Interstellar travel: pre-2000 studies

Several serious studies (Longshot, Orion, Deadalus)

Propulsion challenge is significant

UPPER MODULE
SECTION (BODY)

INTERMEDIATE
PLATFORM

Ist STAGE
SHOCK ABS.

PUSHER

2nd STAGE
SHOCK ABS.

PROPELLANT
MAGAZINES

PROPULSION
MODULE

Project Orion — using nuclear propulsion, massive spacecraft



Starshot project

Leverages current/future technology developments:

— small spacecraft (~gram)

— Ground-based laser propulsion (“don't carry your
fuel”)




Starshot project — overview

Goal speed: 20% speed of light. Acceleration phase: few minutes, >10,000 G.
Travel time: few decades. Flyby, no deceleration phase.

Launch many nanocrafts ($$ is in launch facility and technology development,
not in individual nanocrafts)

Significant technology challenges :

— Laser array power and cophasing

— Sall/nanocraft: reflectivity, stability (spinning salil ?), Interstellar
medium abrasion, High-G low mass electronics, camera, battery

— Navigation (photon thrusters for course correction)

— Communication during flight (for course correction) and upon arrival
(beaming back images)

Next steps: Sub-scale demonstration of sail laser propulsion reaching
~100km/s (in vacuum pipe) + concept studies for key challenging aspects of
project

Breakthrough Initiatives Foundation will request proposals from
iIndustry/university teams to work on the hard problems... RFPs are under
preparation — get ready !
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