Subaru Coronagraphic Extreme Adaptive Optics

Olivier Guyon – oliv.guyon@gmail.com University of Arizona Subaru Telescope, National Astronomical Observatory of Japan National Institutes for Natural Sciences (NINS) Astrobiology Center JAXA

SCEXAO team

Feb 26, NAOJ / Mitaka

Subaru Coronagraphic Extreme-AO (SCExAO)

O. Guyon,

N. Jovanovic, J. Lozi, T. Currie, G. Singh, C. Clergeon, S. Goebel, P. Phatak, J. Males, T. Kudo, D. Doughty, J. Morino and F. Martinache

CEAP Subaru Coronagraphic Extreme Adaptive Optics

SCE AC Subaru Coronagraphic Extreme Adaptive Optics

SCE A Subaru Coronagraphic Extreme Adaptive Optics

Wavefront sensing:

- Non-modulated pyramid WFS (VIS)
- Coronagraphic low order wavefront sensor (IR) for noncommon tip/tilt errors
- Near-IR speckle control

2k MEMS DM

Numerous **coronagraphs** – PIAA, Vector Vortex, 4QPM, 8OPM, shaped pupil (IR)

Visible Aperture Masking Polarimetric Interferometer for Resolving Exoplanetory Signatures (VAMPIRES) (VIS)

Fibered Imager for a Single Telescope (FIRST) (VIS) Fourier Lucky imaging (VIS)

Broadband diffraction limited internal cal. Source + phase turbulence simulator

SCERAGE Subaru Coronagraphic Extreme Adaptive Optics

CEAG Subaru Coronagraphic Extreme Adaptive Optics

Coronagraphs

Deformable mirror

Extreme-AO loop

2000 actuators MEMs DM running at 3.6 kHz (fastest ExAO system) deep depletion EMCCD \rightarrow very sensitive

Now reaching 80% SR in H under challenging conditions (m=7 star, 50mph wind)

Recent upgrade allows 3.6kHz loop operation with zonal and modal reconstruction

 \rightarrow low-latency control

 → modal reconstruction for predictive / LQG control (under development)

> SCExAO uses 25,000 cores running >1GHz

One of two GPU chassis

How SCExAO achieves high contrast

(1) Small IWA, high throughput Coronagraphy

→ removes diffraction (Airy rings), transmits r>1 l/D region

(2) Extreme-AO with fast diffractionlimited WFS

→ removes wavefront errors

(3) Near-IR LOWFS

 \rightarrow keeps star centered on coronagraph and controls Focus, Astig, etc..

 \rightarrow records residual WF errors to help process data

(4) Fast Near-IR Speckle control

 $\rightarrow\,$ modulates, removes and calibrates residual speckles

Requires fast low-noise detectors

Speckle nulling on-sky

Coronagraphs

<i>"The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High- Contrast Imaging on Solar-System</i>	Coronagraph type	Inner working angle (λ/D)	Waveband(s)
Scales" Jovanovic et al. Publications of the Astronomical Society of the Pacific, Volume 127, issue 955, pp.890-910	PIAA PIAACMC Vortex MPIAA + Vortex MPIAA + 8 Octant 4 quadrant Shaped pupil	$1.5 \\ 0.8 \\ 2 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3$	y-K y-K H H H H y-K

TABLE 8. DETAILS OF SCEXAO CORONAGRAPHS.

-2 40.06 -1 20.06 2 00.09 1 20.06 2 40.06

SCExAO: wavefront control loop

Ref: Singh et al. 2015

Systematically removing speckles

Presence of static & slowvarying aberrations in the path of science camera sets contrast limit at present

Typical SCExAO PSF

Spatial frequency in pupil

Matching speckles in the image

speckle nulling results on-sky (June 2014)

Single frames: 50 us

Meta data: Date: 2nd or June Target: RX Boo (also repeated on Vega) Seeing: <0.6" AO correction: 0.06" post-AO corrected in H- band (0.04" is diffraction-limit) Coronagraph: None (used Vortex on Vega)

Sum of 5000 frames: shift and add

Martinache, F. et. al.

Coherent Speckle Differential Imaging

4.08e-11 8.10e-08 2.43e-07 4.85e-07 8.09e-07

8m: Pyramid-based system + nearIR Speckle Control → 1e-8 contrast

Residual speckle at ~5e-5 contrast and fast \rightarrow good averaging to detection limit at few 1e-7

SAPHIRA Infrared APD array

HgCdTe avalanche photodiode manufactured by Selex

<u>Specifications</u> 320 x 256 x 24µm 32 outputs 5 MHz/Pix

50 frame average

MKIDS camera (built by UCSB for SCExAO)

Photon-counting, wavelength resolving 100x200 pixel camera

Pixels are microwave resonators at ~100mK photon hits \rightarrow resonator frequency changes

Electron-injector nearIR camera (Northwestern Univ / Keck foundation)

FIG. 3.— (a) Image of PSF. PSF with 2 sets of artificial speckles at 10 λ/D (400 mas) from the PSF, (b) incoherent speckles, (c) coherent speckles. PSF subtracted image (d) with incoherent speckles (e) with coherent speckles. A square-root stretch was applied and the minimum and maximum of each image adjusted for maximum contrast. Data taken on Beta Leo on the 1st of April, 2015.

Astrometric calibration

"Artificial Incoherent Speckles Enable Precision Astrometry and Photometry in High-contrast Imaging"

Jovanovic, N.; Guyon, O.; Martinache, F.; Pathak, P.; Hagelberg, J.; Kudo, T.

The Astrophysical Journal Letters, Volume 813, Issue 2, article id. L24, 5 pp. (2015)

> Now modulating at 3.6 kHz !!! (Feb 2016)

SCExAO high contrast imaging capabilities: expected schedule for capabilities offered to observers

FIG. 5.— Calibration data for the APF-WFS acquired by the SCExAO science camera. Top left: the reference PSF, acquired with the system in its starting state. From left to right and top to bottom: the PSF after the corresponding Zernike mode has been applied. A non-linear scale is used to better show the impact of a 30 nm RMS DM modulation.

FIG. 6.— Experimentally recovered Zernike modes. Save for the spherical aberration, one will observe that the modes extracted from the analysis of the images of Fig. 5 do reproduce the features expected after looking at the theoretical reconstructed modes presented in Fig. 4.

APF-WFS (Martinache et al.)

FIG. 8.— Illustration of the impact of the APF-WFS. Left: 0.5 ms PSF acquired by SCExAO's internal science camera after the upstream AO loop has been closed. Right: identical exposure acquired 30 seconds after the APF-WFS loop has been closed. Despite residual imperfections due to dynamic changes, the PSF quality is obviously improved.

HiCIAO + SCExAO: Kappa Andromedae (Currie et. al, in prep)

SCExAO + HiCIAO

HiCIAO

HiCIAO + SCExAO: Substellar companion (sub-arcsec separation)

Garcia, Currie, et al. 2016, in prep.

Also detected with GPI (similar SNR) SCExAO data used to better constrain the object's temperature, gravity, and mass.

Direct Imaging Search for Companion Giant Planets and Brown Dwarfs to Sun-like Stars with Radial Velocity Drifts using Subaru/SCExAO

Figure 1. A schematic diagram of VAMPIRES as configured on-sky in 2013 July, with all items relevant to the VAMPIRES beam train shown. Operation of each sub-system is described in the text. Abbreviations: M – Mirror; L – Lens; OAP – Off Axis Parabola; DM – Deformable Mirror; Dicr.M – Dichroic Mirror; HWP – Half-wave plate; BRT – Beam Reducing Telescope; LCVR – Liquid-Crystal Variable Retarder; LCC – LCVR Controller; TC – Temperature Controller; Cam – Camera; QWP – Quarter-Wave Plate; Depolz – Depolarizer; OAP col. – OAP Collimator; Lin polz – Linear polarizer. In an alternative configuration, the HWP can be replaced with a pair of QWP to allow birefringence to be corrected as needed.

Non-polarised mode and results

• VAMPIRES can also operate as a conventional (non-polarimetric) non-redundant masking instrument.

Chi Cyg Power spectrum (log scale) Note fall-off in power at longer BLs, since object is resolved.

Observed S-type star chi Cyg

V ~ 8 at time of observation

VAMPIRES UD Diameter

32.2 ± 0.1 mas (750 nm)

c.f. CHARM Catalogue, Richichi et al. 2005:

 $UD = 32.8 \pm 4.1 \text{ mas} (V \text{ band})$

Observed close binary eta Peg

Detection confidence (MC) > 99.9%

Separation 48.9 ± 0.6 mas c.f. orb. params. Hummel+ 1998 →49.9 mas

Contrast 3.55 ± 0.06 mag c.f. Hummel+ 1998: 3.61 ± 0.05 mag

Preliminary VAMPIRES science - in preparation

Circumstellar dust around Red Supergiant µ Cephei

- Observed with annulus mask at 775 nm
- Raw differential polarized visibilities show distinctive sinusoidal signature of circumstellar dust shell, with clear asymmetry (right)
- Dust scattering model fitted via synthetic differential visibilities (below)

Preliminary VAMPIRES science – in preparation

Circumstellar dust around Red Supergiant µ Cephei

Model-fitting reveals extended, asymmetric dust shell, originating within the outer stellar atmosphere, without a visible cavity. Such low-altitude dust (likely Al₂O₃) important for unexplained extension of RSG atmospheres.

Inner radius: 9.3 ± 0.2 mas (which is roughly R_{star}) Scattered-light fraction: 0.081 ± 0.002 PA of major axis: $28 \pm 3.7^{\circ}$ • Aspect ratio: $1.24 \pm$ 0.03

Left: model image, shown in polarized intensity. Middle: model image show in four polarisations. Right: Model image (intensity), shown with wide field MIR image (from de Wit et al. 2008 – green box shows relative scales. Axis of extension in MIR image aligns with the close-in VAMPIRES image. V Polarised image

X position (mas)

10 -20 -10 0 20 -20 -10 0 10 X position (mas) X position (mas)

RHEA: Replicable High-resolution Exoplanet & Asteroseismology (PI: Michael Ireland, ANU)

The main specifications of RHEA@Subaru are:

Spatial Resolution	8 milli-arcsec	
Spectral Resolution	R~60,000	
Total Field of View	\sim 4 arcsec	
Instantaneous Field of View	40 milli-arcsec	Doublet -
IFU Elements	9 (with dithering capability)	F/#-
Spectrograph Total Efficiency	40%	Trius SX-694
Injection Unit Efficiency	Strehl \times 0.6	

RHEA first light @ Subaru: Eps Vir (detail) Feb 2016

FIRST visible light interferometer

Near future developments

GLINT: Guided Light Interferometric Nulling Technology (proposed - PI: Tuthill)

AO 188

Near-IR photonic nuller chip

Figure 1: Dust density (Left panel) and simulated 10 μm near-IR image (Right panel) for an exozodiacal disk containing a 5 Earthmass planet in a 1 AU orbit^{XXStark}. Shepherding of the dust by orbital resonanaces is clearly visible, and presents a significantly more prominent marker to a remote observer than the planet itself.

Telescope

SCExAO

Polariser

SCExAO feeding IRD

Jovanovic, Kawahara, Kotani, Guyon

- H-band is most useful for self-luminous planets.

J-band is less useful for the self-luminous one although it's very important for habitable planets.
Y-band exhibits worse contrast in general, and it's just important for UV absorbers (TiO & VO) in hot planets (>~2000K).

Table 1. Important molecules in Y, J, and, H bands

band	modlecules
У	TiO, VO, FeH, H2O
J	CH4(weak), H2O, FeH, Fe(5-6 lines), K(4 lines), Na(2 lines)
Н	CH4, C2H2, CO2, NH3, CO(weak), H2O, FeH

Figure 1. HITRAN Line Intensity (T=1000K)

Simultaneous spectroscopy of planet and background speckles

Spectroscopic characterization of exoplanets Exoplanet search using high spectral resolution signatures as differential signal

"Woofer" AO upgrade

Replace AO188 with optimized AO correction

Would include near-IR Pyramid WFS

- \rightarrow high throughput feeding to IRD
- → more flexibility / Wavelength coverage for visible light modules
- \rightarrow higher high contrast imaging performance
- \rightarrow path to TMT instrument

Near-IR closed loop PyWFS with SAPHIRA

		2: response matrix	3: ExAO correction	B: combined	
astrometry	5: low-order	6: Speckle probes	7: Zero-point offset	9: voltage map	
SCIENCE can Press [h] Because Clock alwa mouse = 10 us (min, max mouse = 10 lsc, s6 non-linear /	for help	nin - max : 0 [0.0000e+00 - [0.0000e+00 -] 0.0000e+00 - [0.0000e+00 -] 0.0000e+0000e+0000e+0000e+0000e+000e+00	0] [cnt0 83807] [cnt0 0 -> PISEL WAL 0 -> PISEL WAL 0 -> PISEL WAL 0 -> 0 000000000000000000000000000000000000	ES 00 IHPORTIN Importin File /tm atype = atype = 10 keywo 0 semaph	FLOAT

CONTROL LOOP	LOOP CONTROL - LOOP 4
1 ->	LOOP CONFIGURATION
GPUse1 GPUaoff CHw0	[Using 5 GPUs] CURRENTLY USING GPU(S) [GPUsil is ON] CURRENTLY USING CPU(S) FOR ALL -> Turn off GPUsil mode [CImode is ON] CURRENTLY USING COMBINED MATRIX -> Switch to separate control ma
2 -> K	LOOP PROCESSES STOP loop processes
3 → 1000001 Z t1 t3	LOOP CONTROL START control loop LOOP Zero step 1 step 2
t10 t30 t100 t300 t1000	step 10 step 30 step 300 step 300 step 1000
4 ->	LOOP MONITORING
4 -> ctreon runeon	Enter twux session aol4-ctr Monitor twux session aol4-run
5 ->	LOOP SETTING
9 m e	loop gain = 0.300 loop max lim = 1.000 mult coeff = 0.380
6 →	Hodal Block Gains
94a11 9400 9402 9403 9404 9405 9406 9407 9408 9409 9411 9412 9413 7 ->	Get all block to same gain 1.0001 block 00 gain (2 modes) [1.000] Modal block 00 gain (1 modes) [1.000] Modal block 00 gain (1 modes) [1.000] Modal block 03 gain (28 modes) [1.000] Modal block 05 gain (77 modes) [1.000] Modal block 05 gain (100 modes) [0.000] Modal block 05 gain (125 modes) [0.001] Modal block 03 gain (125 modes) [0.001] Modal block 03 gain (125 modes) [0.001] Modal block 10 gain (142 modes) [0.001] Modal block 11 gain (140 modes) [0.001] Modal block 12 gain (180 modes) [0.001] Modal block 12 gain (150 modes) [0.001] Modal block 13 gain (150 modes) [0.001] Modal block 13 gain (150 modes) [0.001] Modal block 13 gain (150 modes)
zpault	[1.000] Multiply WFS reference by coefficient
zplon zpinj zpz	START zero point offset loop Inject Fourier mode to DM zero point Zero DM zero point

The ongoing fight against vibrations

5-30 Hz telescope vibrations Due mostly to telescope Alt encoders

Short-term solutions:

- Install accelerometers on telescope
- Feed-forward loop to AO188 TT
- LQG control

Long-term: Change encoders

SCExAO uniquely expands exoplanetary system characterization capabilities at Subaru

Central star: Diameter, shape, pulsations, limb darkening (FIRST, IRD, RHEA) Binarity → masses, constrain RV measurements (FIRST/VAMPIRES/IRD, RHEA) Chemical composition (IRD, RHEA)

Planet mass and orbit from RV (IRD) + imaging

Reflected visible light spectra from postcoronagraph fiber-fed spectroscopy (SCExAO + IRD)

Near-IR spectroscopy (CHARIS + MKIDs) Hot inner dust (thermal emission): visible spectroimaging (FIRST, RHEA) nearIR spectroimaging (CHARIS+MKIDs)

Reflected light dust: visible spectroimaging (FIRST) polarimetric imaging (VAMPIRES) near-IR imaging+spectroscopy (CHARIS+MKIDs)

Where would habitable planets be in contrast/separation ?

