MKIDS @ Subaru Imaging reflected light exoplanets with high performance coronagraphy and MKIDs at Subaru Telescope

The Optical/UV MKID Team:

UCSB: Ben Mazin, Seth Meeker, Matt Strader, Paul Szypryt, Gerhard Ulbricht, Julian van Eyken, Alex Walter, Clint Bocksteigel

JPL: Bruce Bumble

Oxford: Kieran O'Brien

Fermilab: Chris Stoughton, Juan Estrada, Gustavo Cancelo

The SCExAO Team:

Subaru Telescope: Olivier Guyon, Nemanja Jovanovic, Garima Singh, Tomoyuki Kudo, Christophe Clergeon

NAOJ: Junichi Morino

Observatoire de la cote d'Azur: Frantz Martinache

+ University of Sydney VAMPIRES team

+ Observatoire de Paris FIRST team

+ Princeton University CHARIS group

+ SCExAO coronagraph teams (Univ. of Hokkaido, JPL, Princeton University)

Contact: oliv.guyon@gmail.com

Exoplanets: Contrast ratio, visible vs. infrared, giant vs rocky

Reflected light: luminosity goes as d⁻² High contrast required

In the near-IR (GPI, SPHERE, SCExAO, P1640...), giant and young planets ("young Jupiters") can be imaged:

- AO systems work well in the near-IR
- Giant planets emit their own light (thermal emission)

But, habitable planets are not bright in near-IR

In the Thermal IR (~10 um), contrast is more favorable for habitable planets.

2M1207 exoplanet (Chauvin et al., ESO, 2004) Probably the first direct image of an exoplanet

> HR8799: first image of exoplanetary sytem with multiple planets (Marois et al. 2009)

Habitable Planets Spectroscopy in near-IR

Atmosphere transmission: O_2 (see Kawara et al. 2012) H_2O CO_2 CH_4

Polarimetry

Cloud cover, variability Rotation period

Reflectivity from ground in atmosphere transparency bands (Ice cap, desert, ocean etc...)

Microwave Kinetic Inductance Detectors (MKIDs)

(slides provided by B. Mazin, UCSB)

- A superconductor is a material where all DC resistance disappears at a "critical temperature". 9 K for Nb, 1.2 K for Al, 0.8 for our TiN
- This is caused by electrons pairing up to form "Cooper Pairs"
 - Nobel Prize to BCS in 1972

- Like a semiconductor, there is a "gap" in a superconductor, but it is 1000-10000x lower than in Si
- So instead of one electron per photon in a semiconductor, you get ~5000 electrons per photon in a superconductor much easier to measure (no noise and energy determination)! We call these excitations quasiparticles
- However, superconductors don't support electric fields (perfect conductors!) so CCD tricks of shuffling charge around don't work
- Excitations are short lived, life times of ~50 microseconds

MKID Equivalent Circuit

Typical Single Photon Event

THEPANG What is a Kinetic Inductance Detector?

- Each resonator (pixel) has a unique resonant frequency in the GHz range
- A comb of sine waves is generated and sent through the device
- Thousands of resonators can be read out on a single microwave transmission line (FDM)

UVOIR MKIDs

- Directly absorb photons in the TiNx (800 mK) MKID inductor
- Nb ground planes with SiO2 crossovers
- Microlens array boosts fill factor to 92%
- Many harsh lessons learned about array design!

10 kpix Array Design

- Array for NSF-funded DARKNESS IFU. 150 micron pitch.
- Stepper patch from 80x125 (10 kpix) to 80x600 (50 kpix)
- Optimized for 0.7-1.4 microns

10 kpix DARKNESS Array

- Dual 1 GSPS 16-bit DACs
- Dual 550 MSPS 12-bit ADCs
- ROACH with Virtex 5 SX95T
- Complete readout for 256 resonators in 550 MHz of bandwidth
- 8 ROACH boards read out 2048 pix
- ~\$25/pixel (Gen2 \$3/pixel)

- Designed in collaboration with Fermilab
- Based on Casper ROACH2 (Virtex 6)
- Uses TI Dual 1.8 GSPS 12 bit ADC
- Will read out 1024 resonators in 1.8 GHz of bandwidth
- 2 boards per feedline in 4-8.5 GHz band, scalable to 30+ kpix
- Incorporates many lessons from Gen1!
- Prototypes by September
- Cost Goal: ~\$5/pixel

Proven at the Telescope with ARCONS

- Array Camera for Optical to Near-IR Spectrophotometery (ARCONS)
- First Light: July 28, 2011, Palomar 200" Coudé
- Now 29 observing nights (Palomar+Lick)
- Lens coupled 2024 (44x46) pixel array in cryogen-free ADR
- 0.5" pixels yields 22"x23" FOV
- 400 nm to 1100 nm simultaneous bandwidth with maximum count rate of ~2000 cts/pixel/sec
- 350-1350 nm soon
- Energy resolution R~8 at 400 nm Mazin et al. 2013, PASP

Mosaic of Arp 147

Mosaic of Arp 147 taken at the Palomar 200" in December 2012 with ARCONS

- 36 pointings on 6" x 6" grid, 1 minute obs. time/pointing
- Colors generated from MKID wavelength information!

SCExAO overview

Subaru Coronagraphic Extreme-AO (SCExAO) system (July 10 2013)

Detail (PIAA optics)

Phase-Induced Amplitude Apodization Coronagraph (PIAAC)

Lossless apodization by aspheric optics.

Light intensity

Guyon, Belikov, Pluzhnik, Vanderbei, Traub, Martinache ... 2003-present

Speckle noise

After all correction, calibrations, differential imaging :

DETECTION CONTRAST LIMIT =

SPECKLE INTENSITY LEVEL

Exp. time / SPECKLE COHERENCE TIME

Time scales:

Photon noise in science camera photon arrival rate Photon noise in WFS: AO loop speed Atm turbulence: wind crossing time D/v Optics, telescope: minutes, hours, days

Chromatic and time lag speckle: 1e-5 speckles, lasting $5s \rightarrow 14h$ to get to 1e-7 contrast

WFS noise speckle: 1e-4 speckles, lasting 1ms \rightarrow 17mn to get to 1e-7 contrast

Speckle noises

Focal plane speckle control

"It is much easier to break something in a way you understand than to fix something you don't understand"

Use Deformable Mirror (DM) to add speckles

SENSING: Put "test speckles" to measure speckles in the image, watch how they interfere

<u>CORRECTION</u>: Put "anti speckles" on top of "speckles" to have destructive interference between the two (Electric Field Conjugation, Give'on et al 2007)

CALIBRATION: If there is a real planet (and not a speckle) it will not interfere with the test speckles

Fundamental advantage: Uses science detector for wavefront sensing: "What you see is EXACTLY what needs to be removed / calibrated"

Coronagraphy testbeds for high contrast (~ 1e-9)

High Contrast Imaging Testbed (HCIT) vacuum facility at NASA JPL

PIAA testbed at NASA JPL : lab results (B. Kern, O. Guyon, A. Kuhnert et al.)

An Earth-like planets could be seen !

Using a deformable mirror to measure and control focal plane speckles

Taking advantage of the full PIAA - focal plane mask - PIAA⁻¹ optical configuration

SCExAO's PIAA coronagraph permits speckle control from 1.5 to 14 λ/D Raw contrast \sim 3e-4 inside the DM control region

In lab \rightarrow

SCExAO DM control region

Single pair of long exposures (1.5 sec) on Pollux by HiCIAO Reduction of the diffraction features in raw images – mean increase in contrast of \sim 2 for brightest ring. Standard deviation reduced by 7x

System architecture

Focal plane WFS based correction and speckle calibration

- 2e-7 raw contrast obtained at 2 λ/D
- Incoherent light at 1e-7 Coherent fast light at 5e-8 Coherent bias <3.5e-9
- Test demonstrates:
- ability to separate light into coherent/incoherent fast/slow components
- ability to slow and static
 remove speckles well below
 the dynamic speckle halo

SCExAO Wavefront control architecture

Performance limit

What residual will look like planet ? Temporal effects: complex amplitude changes with time \rightarrow need FAST detector to resolve Chromaticity: complex amplitude changes with lambda \rightarrow need energy resolution

Static and slow speckles (due to optics) well calibrated with low speed

```
Temporal timescale:

Intensity : crossing time D/v ~ few sec

Complex amplitude : D / (2 \pi \alpha v) < \text{crossing time}

(\alpha = \text{separation in } \lambda/D)

ATTENUATION = \pi dt v \alpha / D

Target m<sub>H</sub>=5

1e-7 speckle, D=8m

\rightarrow 500 ph/s/um \rightarrow few ph per 10ms
```

Speed vs performance: ~100 Hz frame rate would achieve significant gain: ~1e-8 contrast in 1hr exposure

Near-IR detector technology is key

SPEED: Low noise / high speed (ideally photon counting) WAVELENGTH: Wavelength resolution/IFU

MKIDs is ideal technology:

- Photon counting, low latency
- Small # of pixel is OK (very small FOV required)
- Wavelength resolution \rightarrow can be used in broadband light

Speed vs performance for D=8m (no predictive control): ~100 Hz required for significant gain (photon noise excluded – bright star case, valid to mJ~5)

Angular separation (arcsecond)

Phase-Induced Amplitude Apodization Coronagraph (PIAAC)

Lossless apodization by aspheric optics.

Light intensity

Guyon, Belikov, Pluzhnik, Vanderbei, Traub, Martinache ... 2003-present

PIAACMC coronagraph design

Phase Induced Amplitude Apodized Complex Mask Coronagraph (PIAACMC)

PIAACMC gets to < 1 I/D with full efficiency, and no contrast limit

Pupil shape does not matter !!!

Exo-Earth targets within 20 pc

Exo-Earth targets within 20 pc

Assuming that each star has a SuperEarth (2x Earth diameter) at the 1AU equivalent HZ distance

(assumes Earth albedo, contrast and separation for max elongation)

Angular separation at max elongation [arcsec]

First cut limits meant to exclude clearly impossible targets \rightarrow used to identify potential targets \rightarrow instrument requirements

FIRST CUT LIMITS							
	Limit/constraints	Comments					
Angular Separation	Must be > 1.0 λ/D	Limit imposed by coronagraph (see section 4). Corresponds to 11mas on a 30-m telescope in H band.					
Contrast	Must be > 1e-8	High contrast imaging limit (see section 5)					
Star brightness	Must be brighter than m _R = 15	Required for high efficiency wavefront correction (see section 5)					
Planet Brightness	Must be brighter than $m_H = 26.8$	Faint detection limit					

background-limited SNR > 10 in H band image in 1 hr on 30-m telescope (assuming 15% efficiency) 4

274 targets survive the first cut

Strong correlation between planet apparent brightness and system distance

2 white dwarfs : 40 Eri B and Sirius B

Early type stars \rightarrow contrast too challenging

Assuming that each star has a SuperEarth (2x Earth diameter) at the 1AU equivalent HZ distance

(assumes Earth albedo, contrast and separation for max elongation)

Reflected light from HZ Super-Earths: Top 10 targets for a 30m telescope

Assuming that each star has a SuperEarth (2x Earth diameter) at the 1AU equivalent HZ distance

(assumes Earth albedo, contrast and separation for max elongation)

MOST FAVORABLE TARGETS											
STAR							PLANET				
Name	Туре	Distance	Diameter	L _{bol}	mv	m _R	$\mathbf{m}_{\mathbf{H}}$	Separation	Contrast	m _H	Notes, Multiplicity
Proxima Centauri (Gl551)	M5.5	1.30 pc	0.138 R _{Sun} 0.990 +- 0.050 mas [1]	8.64e-04	11.00	9.56	4.83	22.69 mas	8.05e-07	20.07	RV measurement exclude planet above 3 Earth mass in HZ [Endl & Kurster 2008]
Barnard's Star (Gl699)	M4	1.83 pc	$0.193 R_{Sun}$ 0.987 += 0.04 mas [2]	4.96e-03	9.50	8.18	4.83	38.41 mas	1.40e-07	21.97	-
Kruger 60 B (Gl860B)	M4	3.97 pc	0.2 R _{Sun} [3]	5.81e-03	11.30	9.90	5.04	19.20 mas	1.20e-07	22.35	-
Ross 154 (Gl729)	M4.5	2.93 pc	0.2 R _{Sun} [3]	5.09e-03	10.40	9.11	5.66	24.34 mas	1.37e-07	22.82	-
Ross 128 (Gl447)	M4.5	3.32 pc	0.2 R _{Sun} [3]	3.98e-03	11.10	9.77	5.95	18.99 mas	1.75e-07	22.84	-
Ross 614 A (Gl234A)	M4.5	4.13 pc	0.2 R _{Sun} [3]	5.23e-03	11.10	9.82	5.75	17.51 mas	1.33e-07	22.95	Double star (sep=3.8 AU)
G1682	M3.5	4.73 pc	0.26 R _{Sun} [3]	6.41e-03	10.90	9.70	5.92	16.93 mas	1.09e-07	23.33	-
Groombridge 34 B (Gl15B)	M6	3.45 pc	0.18 R _{Sun} [3]	5.25e-03	11.00	9.61	6.19	20.98 mas	1.33e-07	23.39	150 AU from M2 primary
40 Eri C (Gl166C)	M4.5	4.83 pc	0.23 R _{Sun} [3]	5.92e-03	11.10	9.88	6.28	15.93 mas	1.18e-07	23.61	35AU from 40 Eri B (white dwarf), 420 AU from 40 Eri A (K1)
GJ 3379	M4	5.37 pc	0.24 R _{Sun} [3]	6.56e-03	11.30	10.06	6.31	15.09 mas	1.06e-07	23.75	-
[1] Angular diameter (uniform disk, non limb-darkened value) measured by optical interferometry with VLTI Demory et al. 2009											

[2] Uniform disk angular diameter from <u>Lane et al. 2001</u>

[3] No direct measurement. Approximate radius is given. If possible, radius is extrapolated from photometry using K magnitude and radius vs. absolute K magnitude relationship in Demory et al. 2009

Proxima Centauri

Alpha Centauri A

Proxima Centauri

lan Morison

Reflected light from HZ rocky exoplanets: Key Requirements for ELTs

Coronagraph:

15 mas IWA (~1.5 I/D in near-IR), <1e-4 contrast High efficiency (throughput, angular resolution)

AO system:

RAW contrast : ~1e-4 contrast between 10 and 40 mas Guide star: V~11, R~9.5, I~8

DETECTION contrast: ~1e-7 to 1e-8

ELT simulated ExAO

30m telescope, Sensing at 600nm, Imaging at 1600nm 4 kHz loop speed + 200us delay, integrator, gain = 0.5

1cm WF sampling, chromatic diffractive propagation through atmosphere computed at 4kHz, 100kHz internal frequency \rightarrow 20 TB for 10 sec

1e-4 speckles due to:

Chromaticity → WFS at longer wavelength (focal plane)

Time lag → predictive control, DM microstepping

Scint

OPD chromaticity

Scintillation chromaticity (nearIR[1.6um] OPD – visible[0.6um] OPD), 40x40m

Due to :

(1) change in refactive index (gain factor)(2) atmospheric refraction(alt-dependent translation)

(also, diffraction propagation to lesser degree)

~0.1 rad RMS \rightarrow 1% SR loss

But:

Dominated by low spatial frequencies Slow (speckle lifetime up to few sec on ELT)

Creates ~1e-6 speckles with ~1 to ~5 sec lifetime \rightarrow ~1e-7 speckles in 1hr exposure

Optimal OPD scaling

0.6 um vs 1.6 um: 1.4% difference in (n-1)

0.8 um vs 1.6 um: 0.7% difference in (n-1)

Scaling removes most of the low order OPD chromaticity

Multiplicative coefficient (here 1.017) can be computed, but difficult to separate telescope errors from atmosphere

1	8. C	12	100			12	12	1
-0.4	-0.3	-0.2	-0.1	0.00049	0.1	0.2	0.3	0.4

Predictive control

Time lag speckles are the main source of planet-looking speckles in DM control area \rightarrow predictive control is essential

DM Microstepping/smoothing

DM motion needs to smoothly follow atmospheric speckles → may need to interpolate DM motion (analog/mechanical/control)

Imaging habitable planets from space and ground

----- Space ------

Habitable planets can be imaged around nearby Sun-like stars with ~4m telescope

----- Ground ------

Next generation of 30-m telescopes will image habitable planets around nearby low-mass stars. MKIDs detector + small IWA coronagraph