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Exoplanets & dust 
disks

Protoplanetary disk:
Disk in the process of 
forming planets

Debris disk: 
Disk generated by 
collision between small 
bodies

Ability to image planets 
and disks → study 
planetary formation and 
evolution of planetary 
systems 

Beta Pic exoplanet and dust 
disk (Lagrange et al. 2009)



HR8799 imaged with coronagraphy on LBT

1 l/D IWA, using vortex coronagraph

N' band

Inner planets ~1e-4 contrast

See Defrere et al. Poster



Exoplanets: Contrast ratio, visible vs. infrared, giant vs rocky

Reflected light: luminosity goes as d-2

High contrast required

In the near-IR (GPI, SPHERE, SCExAO, P1640...), giant and young planets (“young 
Jupiters”) can be imaged:

• AO systems work well in the near-IR 
• Giant planets emit their own light (thermal emission)

But, habitable planets are not bright in near-IR

In the Thermal IR (~10 um), contrast is more favorable for habitable planets.
 

2M1207 exoplanet 
(Chauvin et al., ESO, 
2004)
Probably the first 
direct image of an 
exoplanet

HR8799: first image 
of exoplanetary sytem 

with multiple planets
(Marois et al. 2009)







Spectroscopy of Earth-like planets
… may allow detection of life

 

Turnbull et al. 2006

Spectroscopy can identify biomarkers: molecular species, or combinations of 
species that can only be explained by biological activity
On Earth: water + O
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Spectra of Earth obtained through Earthshine observation also reveals vegetation's 
red edge !



Coronagraph concepts & systems

Olivier's thumb... 
the slimplest coronagraph
Doesn't work well enough to 
see planets around other stars





Lyot Coronagraph 

Pupil plane complex amplitude ↔ focal plane complex amplitude 

→ Fourier transform
← Inverse Fourier transform

Coordinates in pupil plane: x,y
Coordinates in focal plane : u,v
 * denoting convolution (product = convolution in Fourier transform)

P
1
(x,y)

F
1
(u,v) F

2
(u,v) P

2
(x,y) P

3
(x,y) F

3
(u,v)

M(u,v)

L(x,y)



1
1

A more fancy coronagraph 
design



Phase-Induced Amplitude Apodization 
Coronagraph (PIAAC)

Guyon, Belikov, Pluzhnik, Vanderbei, Traub, Martinache ... 2003-present

Lossless apodization by aspheric optics. 
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High Contrast Imaging Testbed (HCIT) vacuum facility at NASA JPL

Coronagraphy testbeds for high contrast (~ 1e-9) 



PIAA testbed at NASA JPL : lab results
(B. Kern, O. Guyon, A. Kuhnert et al.)

An Earth-like planets could be seen !

Location of the star 
(mostly blocked)



Science return:
2.4 m telescope 
with 1.3 l/D IWA 
PIAACMC
Assuming photon-noise 
limited sensitivity

19 targets for Earths 
(SNR>5, R=5, 10hr)

Background (1 zodi):
~ 5x planet light

Star diameter:
~ 30x planet light

→ REQUIRES ~1% PSF 
calibration to reach 
photon noise

Typical star diam:
1 to 5 mas



Space-based direct imaging of habitable 
planets

Coronagraphs now reaching performance required for direct imaging 
of Earth-like planets around sun-like stars

Internal or external (occulter) coronagraph

Minimum telescope size to access Earths around >10 stars: ~2-4m

Exposure times for spectroscopy ~week

Timescale: late 2030s, 2040s ? 
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30-m telescope, H band

1 l/D 2 l/D

2.4-m telescope, 0.5 um

1 l/D 2 l/D 4 l/D
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ELTs in near-IR 

~4m space 
telescope in 
visible light

ELTs in thermal IR ? 
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Reflected light planets

Assuming that each star has a SuperEarth (2x Earth diameter) at the 1AU 
equivalent HZ distance

(assumes Earth albedo, contrast and separation for max elongation) 
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direct gain from using
larger telescope
(IWA, contrast)
- does not take into account
gain in planet flux - 

TPF-like space
 mission(s)

GPI, SPHERE
SCExAO, P1640
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Reflected light planets

First cut limits meant to exclude clearly impossible targets

→ used to identify potential targets → instrument requirements

background-limited SNR > 10 in H band image in 1 hr on 30-m telescope
(assuming 15% efficiency)



2
2

Reflected light planets

274 targets survive the first cut

Strong correlation between planet apparent brightness and system distance 
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Reflected light planets
Most targets are red stars (M type), around V ~ 10, R ~ 9

2 white dwarfs : 40 Eri B and Sirius B

Early type stars → contrast too challenging
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Reflected light planets

Assuming that each star has a SuperEarth (2x Earth diameter) at the 1AU 
equivalent HZ distance

(assumes Earth albedo, contrast and separation for max elongation) 
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Reflected light from HZ Super-Earths:
Top 10 targets for a 30m telescope

Assuming that each star has a SuperEarth (2x Earth diameter) at the 1AU 
equivalent HZ distance

(assumes Earth albedo, contrast and separation for max elongation) 
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Proxima 
Centauri
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Reflected light from HZ Super-Earths: 
Key Requirements for ELTs 

Coronagraph:
15 mas IWA (~1.5 l/D in near-IR), <1e-4 contrast
High efficiency (throughput, angular resolution)

AO system:
RAW contrast : ~1e-4 contrast between 10 and 40 mas
Guide star: V~11, R~9.5, I~8

DETECTION contrast: ~1e-7 to 1e-8



2
8

PIAACMC gets to < 1 l/D with full 
efficiency, and no contrast limit

Pupil shape does not matter !!!
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PIAACMC gets to < 1 l/D with full 
efficiency, and no contrast limit
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Coronagraphy: Stellar angular size
On ELT in near-IR, nearby M dwarf is about 0.1 to 0.5 mas radius = 0.01 to 0.05 l/D

→ for 1 l/D IWA coronagraph
RAW contrast limited to ~1e5 to 1e-6 



SCExAO visible images 
resolve some stars



Speckle noise

After all correction, calibrations, differential imaging :

                                                                 SPECKLE INTENSITY LEVEL
DETECTION CONTRAST  LIMIT =         
                                                                 Exp. time / SPECKLE COHERENCE TIME

Uncorrelated noise terms add quadratically in contrast

Chromatic and time lag speckle:
1e-5 speckles, lasting 5s → 14h to get to 1e-7 contrast

WFS noise speckle:
1e-4 speckles, lasting 1ms →17mn to get to 1e-7 contrast 

Time scales:
Photon noise in science camera photon arrival rate
Photon noise in WFS: AO loop speed
Atm turbulence: wind crossing time D/v
Optics, telescope: minutes, hours, days



Speckle noises
Slow speckles (SLO)
Due to optics, NCPEs
1e-5 contrast
~10 mn timescale

Time Lag (TL)
Due to finite AO loop 
speed / time delay
1e-4 contrast
D/v timescale

Chromaticity (CHR)
Due chromaticity 
between WFS and 
science instrument
few x1e-5 contrast
D/v timescale

WFS Aliasing (AL)
Aliasing within WFS
few x1e-5 contrast
D/v timescale

WFS photon noise 
(WFSPN)
Photon noise in WFS
1e-4 contrast
T

WFS
 timescale

Science photon noise (SCIPN)
Photon noise in science image
1e-4 contrast
Photon arrival rate timescale (>kHz)

log(exp time)

contrast

1e-4

1e-5

1e-6

1e-7

1e-8
1ms 10ms 0.1s 1s 10s 100s 1ks 10ks

SLO
AL

WFSPN

TL

CHRSCIPN

Trouble makers are 
1e-4 to 1e-5 speckles 
that last ~1s or more

(limit for ADI/PCA 
and other PSF 

subtraction 
techniques)



Focal plane speckle 
control

Uses one of the most universal laws of physics :

“It is much easier to break something 
in a way you understand than to fix 
something you don't understand”

Use Deformable Mirror (DM) to add 
speckles

SENSING: Put “test speckles” to measure speckles in the image, 
watch how they interfere 

CORRECTION: Put “anti speckles” on top of “speckles” to have destructive 
interference between the two (Borde & Traub 2006, Give’on et al 2007)

CALIBRATION: If there is a real planet (and not a speckle) it will not interfere 
with the test speckles

Fundamental advantage:
Uses science detector for wavefront sensing:
“What you see is EXACTLY what needs to be removed / calibrated”



System architecture

Modulate DM

Deformable 
Mirror (DM)

Coronagraph Science 
camera / IfU

Solver

Coherent light

DM update

Incoherent light

Integrate

Final image

LOWFS
Pointing, 
low-orders

Facility AO
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2e-7 raw contrast obtained at 
2 λ/D 

Incoherent light at 1e-7
Coherent fast light at 5e-8
Coherent bias <3.5e-9

Test demonstrates:
- ability to separate light into 
coherent/incoherent fast/slow 
components
- ability to slow and static 
remove speckles well below 
the dynamic speckle halo

Focal plane WFS based correction 
and speckle calibration
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Subaru Coronagraphic Extreme-AO (SCExAO) system 
(July 10 2013)



Using a deformable mirror to 
measure and control focal plane 

speckles

Taking advantage of the 
full PIAA - focal plane 
mask - PIAA-1 optical 
configuration

SCExAO’s PIAA coronagraph permits speckle control from 1.5 to 14 λ/D
Raw contrast ~ 3e-4 inside the DM control region

SCExAO DM control 
region

Single pair of long exposures (1.5 sec) on Pollux by HiCIAO
Reduction of the diffraction features in raw images – mean increase in contrast of ~2 for brightest ring.
Standard deviation reduced by 7x  

DM flat Speckle nulled

In lab → 

On sky → 



Performance limit 

What residual will look like planet ?
Temporal effects: complex amplitude changes with time
Chromaticity: complex amplitude changes with lambda 

Static and slow speckles (due to optics) well calibrated with low speed

Temporal timescale:
Intensity : crossing time D/v ~ few sec
Complex amplitude : D / (2 π α v) < crossing time
(α = separation in λ/D) 

ATTENUATION = π dt v α / D

Target m
H
=5

1e-7 speckle, D=8m
 → 500 ph/s/um  few ph per 10ms  →



Speed vs performance for D=8m (no predictive control):
~100 Hz required for significant gain

(photon noise excluded – bright star case)



Speed vs performance:
~100 Hz frame rate would achieve significant gain

Near-IR detector technology is key

SPEED: Low noise / high speed (ideally photon counting)
WAVELENGTH: Wavelength resolution/IFU

Possible technologies:
Amplified near-IR detectors (~2e- RON, >kHz frame rate)
Near-IR electron-injector detectors
MKIDs (ideal) 





MKIDs + MEMS for a 
smart focal plane high 

contrast camera
(NAOJ / UCSB)

(coming soon to 
SCExAO)

MKIDs detector MKIDs image @ Palomar

Enables photon-counting performance in near-IR, with energy resolution
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ELT simulated ExAO PSF
30m telescope, Sensing at 600nm, Imaging at 1600nm

4 kHz loop speed + 200us delay, integrator, gain = 0.5
1cm WF sampling, chromatic diffractive propagation through atmosphere 

computed at 4kHz, 100kHz internal frequency → 20 TB for 10 sec

Without coronagraph With coronagraph

1e-4 speckles 
due to:

Chromaticity
→ WFS at longer 
wavelength (focal 
plane) 

Time lag
→ predictive 
control, DM 
microstepping

Scintillation
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OPD chromaticity
Scintillation chromaticity (nearIR[1.6um] OPD – visible[0.6um] 

OPD), 40x40m

Due to :
(1) change in refactive index (gain factor)
(2) atmospheric refraction 
(alt-dependent translation)

(also, diffraction propagation to lesser degree)

~0.1 rad RMS → 1% SR loss

But: 
Dominated by low spatial frequencies
Slow (speckle lifetime up to few sec on ELT)

Creates ~1e-6 speckles with 
~1 to ~5 sec lifetime
→ ~1e-7 speckles in 1hr exposure
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Optimal OPD scaling
0.6 um vs 1.6 um: 1.4% difference in (n-1)

0.8 um vs 1.6 um: 0.7% difference in (n-1)

Scaling removes most of the low order OPD chromaticity

Multiplicative coefficient (here 1.017) can be computed, but difficult to separate 
telescope errors from atmosphere 
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Predictive control
Time lag speckles are the main source of planet-looking speckles in DM control area
→ predictive control is essential
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DM Microstepping/smoothing
DM motion needs to smoothly follow atmospheric speckles

→ may need to interpolate DM motion (analog/mechanical/control)
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Habitable planet coronagraphic imaging:
Scientific opportunities

Space allows access to very high contrast (no atmosphere), but aperture 
size is limited

→ habitable planets around sun-like stars, maybe in ~2040s (2020s if 
“lucky”)

Ground-based telescopes can be very large (~30m), but the contrast 
is limited due to atmosphere

→ habitable planets around M-type stars are low-hanging fruits

Key technologies
– Low-IWA high throughput coronagraphy
– Active speckle control at ~100Hz using low-noise near-IR detector (ideally 

wavelength-resolving)

<1e-8 contrast at 20mas appears realistic → >100 targets

Could happen in 2020s if develop system on 8m telescope and move it to 
ELT when NGS AO works: SCExAO system designed to allow this move

Possibly can extend to deeper contrast, shorter wavelength !



Imaging habitable planets from space and ground

-------------- Space ----------------

Habitable planets can be 
imaged around nearby Sun-like 
stars with 2-4m telescope

---------- Ground ---------------

Next generation of 30-m 
telescopes will image habitable 
planets around nearby low-mass 
stars
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