LOWFS: sensing and control



Design approach: use light rejected by
coronagraph
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Phase-shifting mask

Modulates the light in such a way as to cause it to fall completely outside the Lyot stop mask (by
causing complete destructive interference inside the Lyot stop)

— Almost ALL starlight is directed to LOWFS camera, for optimal LOWFS sensitivity and calibration
— The interaction between PSF and focal plane mask (diffraction) creates a diffraction pattern that is
strongly dependent on low order aberrations, yielding a LOWFS response that is largely free of

non-common path errors: TT is measured as a pattern shape, NOT a photocenter on a reflected spot

— Almost ALL starlight is directed away from pupil, yielding a high throughput, high contrast
coronagraph



Low-order WFC

Problem: planets at small separation look
very similar to pointing error signature

Solution: measure real-time pointing
inside coronagraph using starlight, for
both correction and calibration
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Subaru testbed results
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10.— Laboratory performance for the CLOWFS. Upper left: Measured CLOWFS reference frame

and influence functions for the 5 axis controlled in the experiment. Pre-PIAA and post-PIAA modes look
extremely similar, as expected. Top right: Open loop simultaneous measurement of pre and post-PIAA
modes. The measured amplitudes match very well the sine-wave signals sent to the actuators, and the
CLOWPFS is able to accurately measure all 4 modes shown here with little cross-talk. Since this measurement
was performed in open loop, the measurement also include unknown drifts due to the limited stability of
the testbed. Bottom left: Closed loop measurement of the residual error for the 5 modes controlled. The
achieved pointing stability is about 10=2 A/D for both the pre-PIAA and post-PIAA tip/tilt. Bottom right:
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CLOWES correction OFF (red) and ON (black)

DO 2% B 110724 Digs)

HCIT LOWFS results

See Brian Kern's talk
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Temporal bandwidth estimate

Assumptions:

» Simple integrator controller, with a gain between 0 and 1 (no PID, no Kalman
filter, no on-board processing of PSDs to optimize loop controller)

 CCD camera, 10 MHz pixel readout rate max, 5e- RON

« LOWES is 5x5 pix, readout frame area is 30x30 pix — 10 kHz max frame rate

 LOWES is taking diffracted starlight from Lyot stop (as done on SCEXAO) to
eliminate non-common path errors, and offer high efficiency

« Star is mV=5, 50% bandpass (LOWFS before filter), 20% system efficiency ->
2e8 ph/s -> 4e6 ph/s/pix

10 kHz frame rate: 400 ph/pix/exposure, which is OK for RON

single measurement precision at 10 kHz (photon noise):

2/sqrt(2e4) rad = 0.014 rad RMS = 1/112 lambda/D = 0.42 mas

— Loop should run at full speed, gain ~1. We assume gain = 0.5 (1.0 for HCIT)

Photon noise contribution = 0.27 mas RMS
0 dB point in transfer function at ~500 Hz
Rejection at 50 Hz = 10x, Rejection at 5 Hz = 100x



LOWEFS: telemetry



Overall LOWFS control and calibration

architecture
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Coronagraph leaks calibrated to 1% in SCExXAO (Vogt et al. 2011)
Co-added science image Standard PSF subtraction MMA
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Building the “dictionary”

Problem: Flux in science image << flux in LOWFS
— associating a single LOWFS image to a single science image is not possible

Solutions:

(1) Pseudo long exposure

Use noise-free (EMCCD) detector in science channel

Group LOWFS frames by similarity

Coadd large number of corresponding science images to build dictionary
Requires large on-board data storage and computation

(2) Linear algebra solving
Record short LOWFS exposures (Lij) and long science camera exposures (S))

S = sumj( Su)

Dictionary : Li,j <—>Si’j

After grouping Li,j by similarity, a dictionary L entry is built (L, )
Lk can be written as linear sum of Li = sumj( Li’j)

— corresponding dictionary enty S _is the same linear sum of S s
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Other LOWFS-inspired concepts



Motivations

LOWES is only useful for low-order aberrations
Can unused starlight be used to also control mid-spatial frequencies ?

What does it take to maintain dark hole ?
DM probes (minimum of 3, plus unprobed image): >4 images
— process is slow and inversion is prone to DM calibration errors

If dark hole could be maintained without probes, temporal bandwidth could be increased

Two concepts:
(1) use light outside dark hole
(2) use out-of band light
Benefits:
DM commands derived from single image
Strong coherent coupling: easy to overcome readout noise, zodi



Using light outside dark hole & outside spectral band

WD
(1]

tean: s 95e-07, median: 2. 17e-07, 1.2-2.10
0-4.0

1.2-2.
mean:1.01e-07, median:6.79e-08, 2.0-4.

Light outside dark hole is ~5 orders
of magnitude brighter than inside
dark hole

— intensity is a linear function of
wavefront errors on essentially all
pixels outside dark hole (as opposed
to quadratic)

Std linear algebra AO control
(response, control matrix, SVD,
modal control)

MAIN STEPS:

Response matrix acquisition by
poking DM(s) actuators
— pseudo-inverse — control matrix

Intensity is also a linear function of wavefront errors on essentially all

pixels outside spectral band



Using light outside dark hole: segmented apertures

Outer diffraction structures encode cophasing errors that have impact on dark home
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