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Extreme AO systems
(superAO+coronagraph) myths




Extreme AO myth #1

ExAO = “Extremely complicated/costly AO”



Extreme AO myth #1

ExAO = “Extremely complicated/costly AO”
— EXAO is in many respects simpler than other AO systems:
- bright on-axis natural guide star (no lasers, easiest
configuration for cophasing segments)
- zero field of view system (small optics, single DM OK)




Extreme AO myth #2

High contrast imaging is all about achieving super low wavefront
error
— we always need more actuators



Extreme AO myth #2

High contrast imaging is all about achieving super low wavefront
error
— we always need more actuators

ExAQ is not about making the star's image sharper.. it is about making
sure no uncalibrated starlight falls on the exoplanet.
In EXAQO, the number of actuators in the DM defines the field of view, not
the contrast

— small field = no need for high number of actuators

— detection of planets at up to ~20 I/D can be done with existing

DMs FPAO loop OFF FPAO loop ON




Extreme AO myth #3

Ground-based telescopes will only ever image giant (Jupiter-like)
planets.

Directly imaging habitable planets will require a space telescope.



Extreme AO myth #3

Ground-based telescopes will only ever image giant (Jupiter-like)
planets.

Directly imaging habitable planets will require a space telescope.

New generation of Extremely Large Telescopes (ELTs) + key technologies (including
MEMS) will allow direct imaging of Earth-size planets around nearby low-luminosity
stars



Extreme AO myth #4

ExAO people have no clue what they are doing.
They change their mind about what coronagraph or wavefront
sensor to use every two years.




Extreme AO myth #4

ExAO people have no clue what they are doing.

They change their mind about what coronagraph or wavefront
sensor to use every two years.

— EXAQ instrument with flexible evolutionary path has a lot of value
(SCEXAO)

— don't design ExXAO system details too much in advance

Develop & prototype on 8-m, telescopes — quickly move to ELT when
ELT is ready 10



Subaru Coronagraphic Extreme
Adaptive Optics (SCExXAO) goals

Highly flexible high contrast imaging instrument

Reduce time from new concept to on-sky science

Provide platform to validate new technologies/approaches on sky
Continuously evolving/improving. SCEXAOQO is in the lab, and only goes to the
telescope for observing runs.

Complementary to GPl and SPHERE (use somewhat more mature
technologies for large consistent survey)

Emphasis on high contrast at very small angular separation
— able to probe the inner parts of exoplanetary systems, near habitable

zones
— direct precursor to a habitable planet imager on ELTs

11
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SCEXAO replaced kiloDM with new 2048 actuators
MEMS (July 2013)
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Subaru Coronagraphic Extreme-AO (SCExAOQO) system
(July 10 2013)
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2048 actuator MEMS
(Boston Micromachines)
mounted on Tip-Tilt stage




DM dry air supply ensures that MEMS is never powered if humidity >~10%

Pressure sensor on .
Very small air flow to output (post MEMS) Humidity sensor —
MEMS chamber detects leaks or hose interlock to DM DM electronics
disconnect — power
interlock to DM
power




Example coronagraph image with
2048 actuator MEMS

One defective actuator in telescope pupil — can be
mitigated by coronagraph design

Vortex coronagraph lead: G. Serabyn (JPL)

On sky —
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VAMPIRES (Univ. of Sydney) | erterometry fo

imaging <1A/D
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Chi Cyg diameter

No polarised structure detected around
chi cyg. However (unpolarised) diameter still measured:

VAMPIRES Measurement
(U.D. Diameter):

32.2 £ 0.13 mas (750 nm)

Literature Values
(U.D. Diameter):

32.8 £ 4.10 mas (V band)
CHARM Catalogue, Richichi et al. 2005

Chi Cyg Power spectrum (log scale)
Note fall-off in power at longer BLs,
since object is resolved.



FIRST module on SCExAO visible b mﬂﬂlﬂmﬂ“‘l““u“w
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n Pegasi: Prelimist

1 frame of fringes on n Peg (Rmag=2.3) X* map (closure phase fitting)

Subaru - 2013.07.25 B E._DEEREERE
N ND at600nm: | | 50
. AD at 800nm:: 15mas | | |56
20mas .
= -43.2
) I : . -- t39.8
g 31| R —————— {: .......... 36.4
I ‘i
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i = 1 263
-50 | Separation : 44mas + 4mas | - v
[L Median flux ratio : 0.033 I '
| Predictions: sep=50mas 19°
800nm  600nm  800nm  600nm flux ratio at 800nm : 0.036
Achievements at Lick Observatory (3m) Preliminary analysis
n Peg : Sep ~ AND ; Am=3.6 at 800nm of Subaru data taken on Jllly 251" 2013
(+ other binaries : § CrB, x Dra,  Peg) Median CP statistical error : 0.8°
Median CP statistical error : 1.5° Median CP systematic error : 1.0°
Median CP systematic error : 1.7° — detection limit (40) : 240 at /D
Sensitivity limit : Rmag< 3.5 Sensitivity limit : Rmag< 4.5




Wavefront control architecture (under construction)

Under active development

at Subaru Telescope = ™l Extrame-AQ <@ 100:500Hz o
Currently using 1.7kHz W
low-noise CMOS camera. = CORONAGRAPHIC
Will switch to 3.7 kHz :
EMCCD deep depletion ;';?;‘r:%eed LOW ORDER LOOP
camera at the end of wavefront sensor Near-IR camera
2014, Measures 4..1.9'..2.9(.’. Hz
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Current on-sky wavefront control status

CORONAGRAPHIC
LOW ORDER LOOP

Near-IR camera

10-200 Hz

Measures
low-order
aberrations

800 — 2500 nm
(rejected by
coronagraph)

Near-IR camera

L

Measures
residual starlight

HiCIAO camera

<800nm

>

1350 — 2500 nm

SPECKLE
CONTROL LOOP

Facility Adaptive
Optics system

—=

>800nm

Coronagraph system
Removes starlight

Sharpens image

Deformable mirror,

2048 actuators




Low-order WFC

Problem: planets at small separation

look very similar to pointing error
signature

* Solution: measure real-time pointing
inside coronagraph using starlight,
for both correction and calibration
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Focal plane speckle
control

“It is much easier to break something in a way you understand
than to fix something you don't understand”

Use Deformable Mirror (DM) to add
speckles

SENSING: Put “test speckles” to measure speckles in the image,
watch how they interfere

CORRECTION: Put “anti speckles” on top of “speckles” to have destructive
interference between the two (Electric Field Conjugation, Give'on et al 2007)

CALIBRATION: If there is a real planet (and not a speckle) it will not interfere
with the test speckles

Fundamental advantage:
Uses science detector for wavefront sensing:
“What you see is EXACTLY what needs to be removed / calibrated”



PIAA testbed at NASA JPL : lab results
(B. Kern, O. Guyon, A. Kuhnert et al.)

An Earth-like planets could be seen'!

Monochromatic light (800nm, vacuum) 7.5% wide band (770 - 830 nm, in air)

3 runs, contrast values averaged from 2to ~ 5.10° contrast from 2 to 4 M/D,
4 MD between 5.10° to 9.10% 2.10°® contrast from 3 to 4 D

(figure shows 7.3.10™*° result) Contrast performance limited by
wavefront instability (test in air)




Active speckle control

Active MEMS DM to replace a at small angular separation

j

Taking advantage of the full PIAA - focal plane
mask - PIAA"" optical configuration
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SCExAQ's PIAA coronagraph permits speckle control from |.5 to 14 A/D
Raw contrast ~ 3e-4 inside the DM control region Martinache et al 2012. P




Using a deformable mirror to measure and
control focal plane speckles: on-sky
demonstration with SCExAO

SCEXAO used a kilo-DM to modulate, control
and cancel speckles to detect exoplanets

(Martinache 2012 - 2014)

Image standard deviation (DM flat)

Image standard deviation (after spk nulling)

0.060

0.054
On-sky demonstration of speckle control with coronagraph
BEFORE AFTER
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System architecture

Facility AO

Pointing,

—

Deformable

Mirror (DM) ™= COronagraph wmmge Science

DMjupdate

LOWFS

camera/ IfU

Modulate DM

Solver

Coherent light

Integ rate
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Focal plane WFS based correction
and speckle calibration

- ' Coherent portion
2e-7 raw contrast obtained Raw Image ey sy P

at 2 )\/ D Average Contrast = 2.27e-7

Incoherent light at 1e-7
Coherent fast light at 5e-8
Coherent bias <3.5e-9

Test demonstrates:
- ability to separate light

Into coherent/incoherent e N

fast/slow com ponen ts Average Contrast = 1.63e-7 of coherent portion over 1300
- . loop iterations

- ability to slow and static Average Contrast = 3.5¢-9

remove speckles well below (Contrast scale xT0 in Smage)

the dynamic speckle halo

Guyon et al. 2010




Speed vs performance:
~100 Hz frame rate would achieve significant gain

Static and slow speckles (due to optics) calibrated with low speed

Chromaticity, Time lag (& to some degree aliasing) timescale:
Intensity : crossing time D/v ~ few sec
Complex amplitude : D/ (2 n a v) < crossing time
(a = separation in A/D)

ATTENUATION=ndtva/D o



Contrast

Speed vs performance (no predictive control):

~100 Hz required for significant gain

(photon noise excluded — bright star case)
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ELT simulated ExAO

30m telescope, Sensing at 600nm, Imaging at 1600nm
* 4 kHz loop speed + 200us delay, integrator, gain = 0.5

* 1cm WF sampling, chromatic diffractive propagation through atmosphere computed at
4kHz, 100kHz internal frequency — 20 TB for 10 sec

1e-4 speckles
due to:

Chromaticity
— WFS at longer
wavelength

Time lag
— predictive
control

Scintillation

-6.3 -5.6 -4.9 -4.2 -3.5 -2.8 -2.1 -1.4 -0.7 37

Without coronagraph With coronagraph




Contrast

Catalogs: HIPPARCOS (revised), RECONS, 2MASS, CNS3, SUPERBLINK

Exo-Earth targets within 20 pc
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Contrast
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21406 ELTs in near-IR (& visible ?)
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Habitable Planets Spectroscopy in

Ames 6-channel sunphotometer, AATS-6
- v - + + v

Ames 14-channel sunphotometer, AATS-14

near-IR

Atmosphere transmission:

L"’ ; O2 (see Kawara et al. 2012)
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Conclusions

2048-actuators MEMS DM now part of SCEXAO instrument, since July 2013
(replaces kilo-DM)

On-sky validation of:
- coronagraphic LOWFS using starlight rejected by coronagraph
- speckle control loop
- partial correction using Pyramid WFS
- FIRST instrument, fed by SCExXAO
- VAMPIRES instrument, fed by SCEXAQO

Next steps:

Integrate Pyramid-based ExtremeAO loop

Upgrade Pyrmid WFS camera to 3.7kHz deep depletion EMCCD

Integrate SCExXAQO with CHARIS spectrograph

Upgrade speckle-sensing camera to photon-counting energy resolving MKIDs
camera

Lots of software and algorithms...

Combination of MEMS + fast low noise focal plane camera is extremely
powerful

SCEXxAO is a powerful precursor to direct imaging of habitable planet around 4
M-type stars with ELTs
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