Astronomy outreach, amateur astronomy and exoplanet research

Olivier Guyon

(Subaru Telescope, Univ. of Arizona)

Why are we into astronomy ?

It's fun The night sky is beautiful What is out there ?

Astronomy's big questions

How did the universe form galaxies, planets ? Are we alone ? Other life forms in the universe ?

Why are we into astronomy ?

Astronomy is not very useful on the short term

Astronomers won't make cars better, find cure for deseases etc...

Some parts of astronomy are useful on the short term: Identify asteroids that may impact Earth Predict solar storms, impact of astronomical effects on climate changes

Very little private funding in astronomical research is motivated by economic profit (astronomers don't work for banks and car makers)

Astronomy (amateur and prof.) is motivated by curiosity (of public and amateurs)

Why professional astronomy ? Relationship between public, amateurs and astronomers

Some projects require too much resources for amateur astronomers \rightarrow governments fund people/projects to work on specific astronomy problems

Origins of professional astronomy: boundary between amateurs & professional astromy often fuzzy

Public and amateurs curiosity funds astronomical research

Outreach efforts and amateur astronomers are at the reason astronomical research is possible

Exoplanets discoveries (confirmed exoplanets only)

Exoplanets

839 exoplanets confirmed belonging to 662 exoplanetary systems

Almost all planets are indirectly detected... we do not know much about them

Most planets are ~Jupiter mass. Potentially habitable planets are very difficult to detect with current techniques

→ we need tools to detect and characterize low-mass planets that are **potentially habitable**

This is challenging: planet flux/mass/size is a tiny fraction of star flux/mass/size

Conventional telescopes won't work !

Why coronagraphy ?

Conventional imaging systems are not suitable for high contrast (even if perfect) due to diffraction

Phase-Induced Amplitude Apodization Coronagraph (PIAAC)

Lossless apodization by aspheric optics.

Light intensity

No loss in angular resolution or sensitivity Achromatic (with mirrors) Small inner working angle

 \rightarrow Gain \sim x2 in telescope diameter over previous concepts

Guyon, Belikov, Pluzhnik, Vanderbei, Traub, Martinache ... 2003-present

PIAA optics

NASA JPL vacuum testbed

PIAA is reaching few x1e-9 contrast at 2 lambda/D separation

NASA Ames testbed

Contrast ratio with PIAA already reaching ~1e-6 at 1.2 I/D in visible

The Subaru Coronagraphic Extreme-AO (SCExAO) system

Reflected light planets with Extermely Large Telescopes

Assuming that each star has a SuperEarth (2x Earth diameter) at the 1AU equivalent HZ distance (assumes Earth albedo, contrast and separation for max elongation)

Habitable planets spectroscopy

Can amateur astronomers participate in exoplanet research ?

Exoplanet transit: Monitor a lot of stars for a long time, wait for periodic dimmings

Amateur astronomers, public : lots of eyes, lots of small telescopes \rightarrow can participate to exoplanet research with transit technique

See for example Planet Hunters program using Kepler data Amateur astronomers have discovered exoplanets by looking at Kepler data

Exoplanet transit with commercial DSLRs

Transit Field #1 (in Cygnus), camera 2 (Sept 11, 2012 UT)

Transit Field #1 (in Cygnus), camera 2 (Sept 11, 2012 UT)

Transit Field #1 (in Cygnus), camera 2 (Sept 11, 2012 UT)

