The Subaru Coronagraphic Extreme-AO (SCExAO) system

Olivier Guyon (Subaru Telescope & University of Arizona) Frantz Martinache

Vincent Garrel (PhD student: visible imaging) Christophe Clergeon (PhD student: ExAO wavefront sensing) Celia Blain (PhD student: MEMS deformable mirror models)

Jun-Ichi Morino (HiCIAO + SCExAO) Tomoyuki Kudo (HiCIAO + SCExAO)

+ HiCIAO team, AO188 team

The Subaru Coronagraphic Extreme-AO (SCExAO) system

High contrast imaging at small angular separation is scientifically extremely valuable:

- allows sytem to probe inner parts
 of young planetary systems (<10 AU)
- constrain planet formation in the **habitable zone** of stars
- **direct imaging** of reflected light planets may be possible (reflected flux goes as a⁻²)

Coronagraphy:

High efficiency 1 λ /D PIAA coronagraph

Wavefront control:

- NIR focal plane WF control/calibration
- ExAO-optimized visible WFS visible channel
- Exquisite pointing control

Aux. Science modes:

- Non-redundant masking
- Visible light imaging

Designed as a **highly flexible, evolvable platform** (reduce time from lab demo to science) Efficient use of AO188 system & HiCIAO camera Technology development overlap with space coronagraphy

PECO overview

NASA-funded Advanced Strategic Mission Concept Study, medium class mission (~\$800M cost cap)

High contrast coronagraphic imaging of the immediate environment of nearby stars.

Characterization of planets (including Earths/SuperEarths) and dust in habitable zone

- •1.4m diameter off-axis telescope (sized for medium-class cost cap), 3 yr mission
- drift-away heliocentric orbit for maximum stability
- •Uses high efficiency low IWA PIAA coronagraph
- •0.4 0.9 micron spectral coverage / $R\sim$ 20, polarimetric imaging
- •Active technology development program includes NASA JPL, NASA Ames, Subaru Telescope, Lockheed Martin

PIAA lab at Subaru Telescope

Coronagraphy testbeds for high contrast (< 1e-8) work need to achieve high stability

High Contrast Imaging Testbed (HCIT) is a vacuum facility at NASA JPL

NASA Ames testing PIAA coronagraph / WFC architectures & MEMs DMs.

High contrast imaging in lab reaches much higher performance than what is currently achieved on-sky: newer technologies, more stable environment, better calibrations

SCExAO's goal is to deploy on the telescope new techniques which have been demonstrated in the lab to offer high performance, and to create the conditions necessary to achieve this high performance

PIAA coronagraph image at NASA Ames testbed (R. Belikov group)

SCExAO at Subaru Telescope (Aug 2010)

The Subaru Coronagraphic Extreme-AO (SCExAO) system

The Subaru Coronagraphic Extreme-AO (SCExAO) system

Phase-Induced Amplitude Apodization (PIAA) coronagraph

Utilizes lossless beam apodization with aspheric optics (mirrors or lenses) to concentrate starlight in single diffraction peak (no Airy rings).

- high contrast (limited by WF quality)
- Nearly 100% throughput
- IWA 0.64 λ /D to 2 λ /D
- 100% search area
- no loss in angular resol.
- can remove central obsc.
 and spiders
- achromatic (with mirrors)

Refs: Guyon, Pluzhnik, Vanderbei, Traub, Martinache ... 2003-present Lab demos at NASA Ames, NASA JPL for space coronagraphy

3rd generation refractive PIAA optics

- On-axis lenses
- Lenses are 96 mm apart
- Apodize the beam
- Remove the central obscuration

Spider Removal Plate

- 15 mm thick precision window
- Fused Silica
- Tilt angle: 5 +/- 0.02°

mm

Beam shaping hardware

SCExAO Wavefront Control architecture and speckle calibration

AO188 Woofer reduces WFE to ~200nm AO188 is stand alone: no communication with SCExAO

AO188 system at the Nasmyth focus

AO system

IR camera& spectrograph

the second second

Laser room

SCExAO visible high speed WFS

Wavefront sensing at the diffraction limit of the telescope

Fig. 9.— Wavefront reconstruction using the algorithm shown in fig. 8. Four noisy defocused pupil images (images (a), (b), (c) and (d)) are acquired to transform the pupil phase aberrations (e) into intensity signals. The input pupil phase is 609 nm RMS, yielding the PSF (f) before correction. After correction, the residual pupil phase aberration (g) is 34.4 nm RMS, allowing high Strehl ratio imaging (h). All images in this figure were obtained at 0.65 μ m. The total number of photons available for wavefront sensing in 2e4.

Computer Simulations showing contrast gain with high sensitivity WFS (nonlinear curvature)

m ~ 13

WFS

nlCurv

SH - D/9

SH - D/18

SH - D/36

SH - D/60

LOOP OFF		SH, D/d = 60 Loop frequency = 140 Hz	SH, D/d = 36 Loop frequency = 160 Hz
	1537 nm RMS	227 nm RMS	183 nm RMS
SH, D/d = 18 Loop frequency = 180 Hz		SH, D/d = 9 Loop frequency = 180 Hz	nlC, limit = 16 CPA Loop frequency = 260 Hz
1000			
	195 nm RMS	315 nm RMS	101 nm RMS
pop frequ	195 nm RMS	315 nm RMS SR @ 0.85 um	101 nm RMS
oop frequ 60 Hz	195 nm RMS RMS 101 nm	315 nm RMS SR @ 0.85 um 57%	101 nm RMS SR @ 1.6 um 85%
oop frequ 60 Hz 80 Hz	195 nm RMS RMS 101 nm 315 nm	315 nm RMS SR @ 0.85 um 57% ~4%	101 nm RMS SR @ 1.6 um 85% 22%
oop frequ 60 Hz 80 Hz 80 Hz	195 nm RMS RMS 101 nm 315 nm 195 nm	315 nm RMS SR @ 0.85 um 57% ~4% ~13%	101 nm RMS SR @ 1.6 um 85% 22% 56%
oop frequ 60 Hz 80 Hz 80 Hz 60 Hz	195 nm RMS RMS 101 nm 315 nm 195 nm 183 nm	315 nm RMS SR @ 0.85 um 57% ~4% ~13% ~16%	101 nm RMS SR @ 1.6 um 85% 22% 56% 60%
	SH, D/d = 18 Loop frequency :	1537 nm RMS SH, D/d = 18 Loop frequency = 180 Hz	Loop frequency = 140 Hz1537 nm RMS227 nm RMSSH, D/d = 18 Loop frequency = 180 HzSH, D/d = 9 Loop frequency = 180 Hz

Performance gain for ExAO on 8-m telescopes

"High Sensitivity Wavefront Sensing with a non-linear Curvature Wavefront Sensor", Guyon, O. PASP, 122, pp.49-62 (2010)

Large gain at small angular separation: ideal for ExAO

SCExAO visible correction: woofer/tweeter Optimal use of all visible light

Visible vs near-IR WFS

Visible is best for high speed high sensitivity WFS

- detectors are fast and cheap (photon counting APDs, EMCCD)
- optical gain is large: 1 nm is a larger phase in VIS than nearIR
- \rightarrow SCExAO uses visible photons for fast WF sensing

Visible and near-IR wavefronts are slightly different

- differential atmospheric refraction (tip-tilt)
- chromatic propagation through atmosphere
- non-common path errors due to optics in SCExAO

\rightarrow near-IR WF sensing and correction is required

Pointing and coronagraphy

Pointing errors put light in the 1 to 2 λ /D region of the focal plane, where planets should be seen

A pointing error and a planet at the inner working angle of the coronagraph look identical

Small IWA coronagraphy requires exquisite pointing control and knowledge

Pointing errors should be detected before they become large enough to induce a strong leak in the coronagraph

Pointing should be measured at the same λ as used for science Should be measured at the diffraction limit of telescope Should be measured at coronagraph focal plane mask

SCExAO Low Order WFS

Coronagraphic LOWFS

(Guyon et al. 2010)

Fig. 9.— CLOWFS focal plane mask used in the PIAA coronagraph laboratory testbed at Subaru Telescope. The 100 micron radius mask center is opaque (low reflectivity), and is surrounded by a 100 micron wide highly reflective annulus. The science field, transmiting light to the science camera, extends from 200 micron to 550 micron radius.

Pointing control demonstrated to 1e-3 λ /D in visible (this would be 0.02 mas on Subaru !!)

SCExAO focal plane WFS

Focal plane AO and speckle calibration

Use Deformable Mirror (DM) to add speckles

SENSING: Put "test speckles" to measure speckles in the image, watch how they interfere

<u>CORRECTION</u>: Put "anti speckles" on top of "speckles" to have destructive interference between the two (Electric Field Conjugation, Give'on et al 2007)

<u>CALIBRATION</u>: If there is a real planet (and not a speckle) it will not interfere with the test speckles

Fundamental advantage: Uses science detector for wavefront sensing: "What you see is EXACTLY what needs to be removed / calibrated"

DM offset chosen to be \sim equal to speckle amplitude

Lab results with PIAA coronagraph + FPAO with 32x32 MEMs DM

See also results obtained at NASA JPL HCIT, NASA Ames & Princeton lab

All high contrast coronagraphic images acquired in lab use this technique.

- No conventional AO system has achieved >1e-7 contrast
- Focal plane AO has allowed 1e-9 to 1e-10 contrast in visible light, with ~lambda/10 optics

Focal plane WFS based correction and speckle calibration

- 2e-7 raw contrast obtained at 2 λ/D
- Incoherent light at 1e-7 Coherent fast light at 5e-8 Coherent bias <3.5e-9
- Test demonstrates:
- ability to separate light into coherent/incoherent fast/slow components
- ability to slow and static
 remove speckles well below
 the dynamic speckle halo

SCExAO residual light calibration

LOWFS post-processing: Principle

Use LOWFS data to estimate coronagraphic leaks in science image, and subtract them in post-processing

Challenge: how to model / link CLOWFS data with coronagraph leaks ?

Solution: Acquire and use a dictionary which stores the correspondance between LOWFS and science images

Coronagraph leaks calibrated to 1% in SCExAO (Vogt et al. 2011, in prep)

Co-added science image

Standard PSF subtraction

MMA

SCExAO schedule

SCExAO is currently in engineering phase

- 1st nighttime engineering Feb 2011 (2 nights): demonstrate coupling with AO188 system + basic functions (no science IR camera – using internal SCExAO video IR camera)
- 2[™] nighttime engineering Jul 2011 (1 night): on-sky wavefront control, test coupling with HiCIAO
- 3rd nighttime engineering Sep 2011 (1 night): on-sky wavefront control + HiCIAO
- → start of science observation with phase 1 system (no fast visible extreme AO WFS)

Detailed schedule uncertain due to Jul 2011 telescope hardware accident...

Phase 2: integrate ExAO visible WFS

SCExAO first visible images (V. Garrel PhD)

SCExAO acquired first visible light diffraction limited on Subaru in Feb 2011 run. Seeing was bad (variable from 1" to 2") and some clouds, but selection + new Fourier-based reconstruction allowed diffraction-limited imaging.

Conclusions

SCExAO WFC architecture combines several innovative technologies to provide both efficient wavefront control and high level of residual light calibration. These technologies have been and are developed in lab testbeds. SCExAO will be first system to test these new concepts on sky.

 \rightarrow much will be learned in the next year

SCExAO's flexible platform allows adaptive architecture, which can be quickly modified if required

SCExAO calibrated contrast limit will be set by incoherent speckles (due to polarization, fast temporal behavior or chromaticity) which "come and go". It is a present difficult to estimate where this limit is.

PSF \neq static slow speckles + random halo which averages to a smooth halo in long exposures