Efficient WFS technologies for direct imaging of exoplanets from ground and space

> Olivier Guyon (guyon@naoj.org)

University of Arizona Subaru Telescope

Wavefront Sensor Options...

Linear, large dynamical range, poor sensitivity: Shack-Hartmann (SH) Curvature (Curv) Modulated Pyramid (MPyr)

Linear, small dynamical range, high sensitivity: Fixed Pyramid (FPyr) Zernike phase constrast mask (ZPM) Pupil plane Mach-Zehnder interferometer (PPMZ)

Non-linear, moderate to large dynamical range, high sensitivity: Focal Plane (FP) Non-linear Curvature (nlCurv) Non-linear Pyramid (nlPyr) ?

Next slide compiles strengths and weaknesses of WFS options, and will be explained with simple but fundamental physics ...

	sensitivity	range	Extended target ? (LGS)	chromaticity	maturity	detector use	
SH	serious noise propagation	Very good	Yes	Low	on sky	at least 4 pixels per subaperture	
Curvature	serious noise propagation	Very good	Somewhat LGS OK	Low	on sky	1 pix/subaperture 2 reads	
Pyramid (modulated)	noise propagation	very good	Somewhat LGS OK	Low	on sky	4 pix/subaperture	
Pyramid (fixed)	Excellent	limited to < 1 rad in closed loop	No	Low	closed loop lab AO w turbulence	4 pix/subaperture	
Zernike phase contrast	Excellent	limited to < 1 rad in closed loop	No	mask manufacturing	?	1 pix/subaperture	
Mach-Zehnder	Excellent	limited to < 1 rad in closed loop	No low if near zero ? OPD		2 pix/subaperture		
Focal plane	Excellent	Good, can have > 1 rad error, but needs coherence	No	No serious closed I AO no tu		4 pix/speckle	
Non-linear curvature	Excellent	Good, can have > 1 rad error, but needs coherence	No	Low	in lab with no turbulence	4 pix/subaperture	

<u>Wavefront sensor sensitivity</u>

Sensitivity = how well each photon is used

For a single spatial frequency (OPD sine wave in the pupil plane, speckle in the focal plane):

Error (rad) = Sensitivity / sqrt(# of photons)

IDEAL WFS: Sensitivity Beta = 1 (1 ph = 1 rad of error) At all spatial frequencies <u>Non-ideal WFS:</u> Beta > 1 (Beta x Beta ph = 1 rad of error)

How to optimally convert phase into an intensity signal ?

Example: a sine wave phase aberration of C cycles across the pupil, amplitude = a rad (in figure below, C = 3, a = 1 rad) Interferences between points separated by x (2xC PI in "phase" along the sine wave) Phase difference between 2 points: phi = 2 a sin(xC PI)Intensity signal is linear with phi (small aberrations approximation)

For a sine wave aberration on the pupil, a good WFS will make interferences between points separated by ~ half a period of the sine wave

SH WFS : sensitivity

Problem: SH does not allow interferences between points of the pupil separated by more than subaperture size

-> Poor sensitivity to low order modes ("noise propagation" effect)

This gets worse as the number of actuators increases !!!

SHWFS is also suffering from noise propagation

Spot sizes is lambda/r0 at best (lambda/d if d<r0) >> lambda/D

Low order modes suffer from very poor SNR

Curvature WFS

Uses **light propagation** to convert phase into intensity -> measure intensity in at least 2 "defocused" pupil planes and compute phase.

Usually, planes at +dz and -dz, with dz ~ 1000km are imaged.

If dz "small" (~1000 km), defocused images are linear function of wavefront curvature

Future slides will shows how phase is converted into intensity modulation in a CWFS

Wavefront sensors "sensitivities" in linear regime with full coherence (Guyon 2005)

Square root of # of photons required to reach fixed sensing accuracy

plotted here for phase aberrations only, 8m telescope. Tuned for maximum sensitivity at 0.5" from central star.

Why do SH, Curvature (& modulated pyramid) have bad sensitivity for low order aberrations ?

Good measurement of low order aberrations requires interferometric combination of distant parts of the pupil FPWFS does it, but:

- __ SH chops pupil in little pieces -> no hope !
 - Curvature has to keep extrapupil distance small (see previous slides) -> same problem

Things get worse as # of actuators go up. -> This makes a big difference for ELTs

Tip-tilt example (also true for other modes): With low coherence WFS, sigma2 ~ $1/D^2$ (more photons) Ideally, one should be able to achieve: sigma2 ~ $1/D^4$ (more photons + smaller I/D)

	sensitivity	range	Extended target ? (LGS)	chromaticity	maturity	detector use
SH	serious noise propagation	Very good	Yes	Low	on sky	at least 4 pixels per subaperture
Curvature	serious noise propagation	Very good	Somewhat LGS OK	Low	on sky	1 pix/subaperture 2 reads
Pyramid (modulated)	noise propagation	very good	Somewhat LGS OK	Low	on sky	4 pix/subaperture
Pyramid (fixed)	Excellent	limited to < 1 rad in closed loop	No Low close AO w		closed loop lab AO w turbulence	4 pix/subaperture
Zernike phase contrast	Excellent	limited to < 1 rad in closed loop	No	mask manufacturing	?	1 pix/subaperture
Mach-Zehnder	Excellent	limited to < 1 rad in closed loop	No	No low if near zero ? OPD		2 pix/subaperture
Focal plane	Excellent	Good, can have > 1 rad error, but needs coherence	No		closed loop lab AO no turbulence	4 pix/speckle
Non-linear curvature	Excellent	Good, can have > 1 rad error, but needs coherence	No	Low	in lab with no turbulence	4 pix/subaperture

WFS range / linearity

small x: phi < 1 rad WFS signal is linear with phase aberrations

large x: phi > 1 rad WFS signal is non-linear with phase aberrations

WFS range, linearity and WFS sensitivity are pushing the WFS architecture in opposite directions

Solution: Non-linear reconstruction allows a large dynamical range measurement on a high-sensitivity WFS

Focal plane WFS

- If speckle field Complex amplitude is known, DM(s) can be controlled to "perfectly" cancel speckles
- DM can be also be asked to create "arbitrary" speckle field for WFS

Malbet, Yu & Shao (1995) Guyon (2005) Give'on (2003–2006) Borde & Traub (2006)

	sensitivity	range	Extended target ? (LGS)	chromaticity	maturity	detector use
SH	serious noise propagation	Very good	Yes Good rang	Low	on sky	at least 4 pixels per subaperture
Curvature	serious noise propagation	Very good	poor sensi	tivity ^{Low}	on sky	1 pix/subaperture 2 reads
Pyramid (modulated)	noise propagation	very good	Somewhat LGS OK	Low	on sky	4 pix/subaperture
Pyramid (fixed)	Excellent	limited to < 1 rad in closed loop	No	Low	closed loop lab AO w turbulence	4 pix/subaperture
Zernike phase contrast	Excellent	limited to < 1 rad in closed loop	Good sens range	itivity over a manufacturing	small ?	1 pix/subaperture
Mach-Zehnder	Excellent	limited to < 1 rad in closed loop	No	low if near zero OPD	?	2 pix/subaperture
Focal plane	Excellent	Good, can have > 1 rad error, but needs coherence	No Non-linea	serious ar reconstruc	closed loop lab AO no turbulence tion algorithr	4 pix/speckle n allows
Non-linear curvature	Excellent	Good, can have > 1 rad error, but needs coherence	good sen	sitivity and la	turbulence	4 pix/subaperture

Guide "star" for WFS: COHERENCE

COHERENCE = ability to make coherent interferences between different parts of the pupil Coherence is usually high across small parts of the pupil, low across large parts of the pupil

What makes the guide star "incoherent" ?

Wavefront stability during sampling time

sampling time too long / turbulence too fast sensing wavelength too short vibrations

Large time-variable and/or unknown wavefront errors poor correction

open loop wavefront sensing

Angular size of source

Atmospheric dispersion source resolved > lambda/D

Chromaticity

Wavefront coherence on large spatial scales must be maintained for high-sensitivity WFS

Temporal coherence:

"long WFS exposure" will greatly attenuate the signal Limits the WFS sensitivity in low light level, where long WFS exposure is required

Spatial coherence:

<u>Sensitivity will not be achieved on extended targets</u> Extended target = points separated by large distance in the pupil plane will produce weak interference This is fundamentally same thing as saying that TT on an extended target is less sensitive

Fundamental effect, will limit all WFS designs equally

Chromatic coherence: <u>WFS design must work in broadband</u> Problem for focal plane WFS, other WFS concepts can work in broadband

"interferometer" representation of temporal coherence in WFS

Matching:

Wavefront sensors "sensitivities" in linear regime with full coherence (Guyon 2005)

Square root of # of photons required to reach fixed sensing accuracy

plotted here for phase aberrations only, 8m telescope. Tuned for 0.5" separation.

	sensitivity	range	Extended target ? (LGS)	chromaticity	maturity	detector use
SH	serious noise propagation	Very good	Yes	Low	on sky	at least 4 pixels per subaperture
Curvature	serious noise propagation	Very good	Somewhat LGS OK	Low	on sky	1 pix/subaperture 2 reads
Pyramid (modulated)	noise propagation	very good	Somewhat LGS OK	Low	on sky	4 pix/subaperture
Pyramid (fixed)	Excellent	limited to < 1 rad in closed loop	No	Low	closed loop lab AO w turbulence	4 pix/subaperture
Zernike phase contrast	Excellent	limited to < 1 rad in closed loop	No	mask manufacturing	?	1 pix/subaperture
Mach-Zehnder	Excellent	limited to < 1 rad in closed loop	No	low if near zero OPD	?	2 pix/subaperture
Focal plane	Excellent	Good, can have > 1 rad error, but needs coherence	No	serious	closed loop lab AO no turbulence	4 pix/speckle
Non-linear curvature	Excellent	Good, can have > 1 rad error, but needs coherence	No	Low	in lab with no turbulence	4 pix/subaperture

Example: Possible Coronagraphic ExAO architecture

The first step is used to clean the wavefront within ~ 1 rad in Visible

The second step operates in the high coherence regime, and adopts the FPWFS.

Gemini Planet Imager (GPI) uses a similar strategy, with an interferometer to measure coherent residuals

Non-linear Curvature WFS

SH: Noise propagation limitation is introduced at the optical level (chopping the pupil in small pieces)

Curvature: Noise propagation comes from processing of WFS frames, which imposes linearity

-> possible to mitigate / solve ?

<u>Problem #2</u>: Low order aberrations "scramble" high spatial frequencies -> defocus distance must be kept small

+/- 1000km

Defocused pupil images are full of lambda/D speckles

+/- 8000km

Standard phase diversity algorithm, working around pupil plane. There are probably better/faster algorithms (see for example: van Dam & Lane 2002, JOSA vol. 19)

kHz operation appears to be possible with current chips for few 100s actuators system (100 32x32pix FFT = 0.2ms on single CPU)

Linear single stroke WFS, 2000 ph total 8m telescope, 0.65 mu, 373 ill. subapert.

Non linear dual stroke WFS, 2000 ph total 8m telescope, 0.65 mu, 373 ill. subapert.

Defocused pupil images

500 ph / frame Top : +/- 2000km Bottom: +/- 8000km Input pupil phase Rec 296nm RMS

Reconstructed phase

Residual: 55nm RMS

SR = 0.763 at 0.65 micron

Magn 16 source -> 2000 ph/ms on 8m telescope

Why is is so good ??? -> uses HSF to infer LSF

Fig. 9.— Wavefront reconstruction using the algorithm shown in fig. 8. Four noisy defocused pupil images (images (a), (b), (c) and (d)) are acquired to transform the pupil phase aberrations (e) into intensity signals. The input pupil phase is 609 nm RMS, yielding the PSF (f) before correction. After correction, the residual pupil phase aberration (g) is 34.4 nm RMS, allowing high Strehl ratio imaging (h). All images in this figure were obtained at 0.65 μ m. The total number of photons available for wavefront sensing in 2e4.

Polychromatic nICWFS with monochromatic wavefront reconstruction algorithm

m ~ 13	LOOP OFF Itera BMS SH, D/d = 18 Loop frequency = 180 Hz		SH, D/d = 60 Loop frequency	7 = 140 Hz 227 nm RMS	SH, D/d = 36 Loop frequency = 160 Hz 183 nm RMS	
			SH, D/d = 9 Loop frequency = 180 Hz		nlC, limit = 16 CPA Loop frequency = 260 Hz	
			DMC			
VVF5	Loop frequ		KI*IS	SK @ 0.85	mu	SK @ 1.6 mu
nlCurv	260 Hz	l01 nm		57%		85%
SH - D/9 180 Hz			315 nm	~4%		22%
SH - D/18	180 Hz		195 nm	~13%		56%
SH - D/36	I 60 Hz		183 nm	~16%		60%
SH - D/60	140 Hz		227 nm	~6%		45%

Example of loss due to temporal coherence. Note how choosing longer sensing wavelength helps by increasing wavefront coherence (even though phase signal gets smaller !!!)

Closed loop simulations

WFS: non-linear phase retrieval on curvature wavefront sensor

Same behaviour would be obtained with fixed pyramid

Fig. 11.— Simulated performance of a non-linear Dual stroke Curvature as a function of sensing wavelength (0.7, 0.85 and 1.0 μ m) and guide star brightness. The stellar magnitudes given in this figure assume a 20% efficiency in a 0.5 μ m wide band. See text for details.

Fig. 12.— Simulated long exposure 1.6 μ m PSFs obtained with a non-linear Dual stroke Curvaturebased AO system. The sensing wavelength was 0.85 μ m for this simulation.

Focal plane WFS

How to **optimally** measure speckle field complex amplitude ?

Use upstream DM to introduce phase diversity. Conventional phase diversity: focus With DM: freedom to tune the diversity to the problem

Measure speckle field with no previous knowledge:

- take one frame - this gives a noisy measure of the speckle field amplitude, but not phase

compute 2 DM shapes which will add known speckles on top of existing speckles. These 2 "additive" speckle field have same amplitude as existing speckles, and the phase offset between the 2 additive speckle fields is PI/2
for each point in the focal plane, 3 intensities -> single solution for phase & amplitude of speckle field

Speckles vs. planet

Spectra differential imaging (SDI)

Optimized for methane-bearing giant planets Will only detect planets with a given spectral feature **Polarization differential imaging (PDI)**

Degree of polarization may be low (few %)

Only works on reflected light

Angular differential imaging (ADI)

Performs well if static speckles are strong Does not work well at small angular separations

Coherent differential imaging (CDI)

Use DM to introduce a know variation in the WF to modulate speckle intensity

Can reach photon noise limit if system is very well calibrated and CDI is performed quickly (or simultaneously)

Lab results with PIAA coronagraph + FPAO with 32x32 MEMs DM

Recent lab results demonstrate PIAA coronagraph + Focal plane AO + coherent differential imaging

Raw image

Coherent starlight

Average contrast in right half of the science field shown above (excludes the ghost on the left) = 7e-9

Contrast achieved in 1.6 to 4.5 I/D zone: 1.5e-7 incoherent halo ghost (equivalent to exozodi) 7e-9 coherent starlight speckles (turbulence, vibrations)

Speckle calibration with active coherent modulation Coherent detection works in the lab alongside FPAO

- Extremely powerful for ExAO:
- Optically simpleNon NCPE
- Non NCPE
- on-the fly diagnostics
- CDI post-processing

Fig. 1.— Optical layout of a coronagraphic low order wavefront sensor system, shown here with a PIAA coronagraph. See text for details.

Guyon, Matsuo, Angel, 2008 - in press Can also be applied to phase mask type coronagraphs (Matsuo & Guyon, in preparation)

Why a central dark spot?

(1) Signal amplification(2) Accurate reference

Fig. 9.— CLOWFS focal plane mask used in the PIAA coronagraph laboratory testbed at Subaru Telescope. The 100 micron radius mask center is opaque (low reflectivity), and is surrounded by a 100 micron wide highly reflective annulus. The science field, transmiting light to the science camera, extends from 200 micron to 550 micron radius.

time (s)

Can we image Earths with ground-based telescopes ?

Reflected light:

- Earth/Sun contrast ~ Ie-9
- SuperEarth ~ 4e-9
- Jupiter @ I AU: 2.5e-8

8-m telescope

8m telescope, very good ExAO + slow near-IR correction

mV = 5, mH = 5Contrast in $H \sim 1e-5 \sim 1e4$ ph/s/speckle (H band background $\sim 1/2$ of this) with ~ 10 Hz residual speckle timescale Photon noise from Halo = $1e-7 \times 1/sqrt(t(s))$ Speckle noise from Halo = $3e-6 \times 1/sqrt(t(s))$

in Ihr, 3-sigma detection limit =
I.5e-7 (no differential detection)
Ie-8 (differential detection, I/4 photons)

30-m telescope

30m telescope, very good ExAO + slow near-IR correction

14x more photons in planet and star, contrast 14x better

still ~Ie4 ph/s/speckle (7e-7 contrast)
Photon noise from Halo = 7e-9 x I/sqrt(t(s))
Speckle noise from Halo = 2e-7 x I/sqrt(t(s))

in Ihr, 3-sigma detection limit =
1.1e-8 (no differential detection)
7e-10 (differential detection, assuming 1/4 photons)

Near-IR Earth spectra

