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PECO overview

High contrast coronagraphic
imaging of the immediate
environment of nearby stars.

Characterization of planets and
dust in habitable zone

1.4m diameter off-axis telescope
0.4 - 1.0 micron spectral coverage / R~20

PECO is one of the “probe-class” (<$|B) NASA-funded Advanced
Mission Concept Studies.
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PECO conceptual layout (LMC)




Use of highly efficient PIAA coronagraph equivalent to x2
gain in telescope diameter

Utilizes lossless beam apodization with aspheric optics
(mirrors or lenses) to concentrate starlight is single diffraction
peak (no Airy rings).

Light intensity

- high contrast

- Nearly 100% throughput
- IWA ~21/d

- 100% search area

- no loss in angular resol.

- achromatic (with mirrors)

More info on :
www.naoj.org/PIAA/


http://www.naoj.org/PIAA/
http://www.naoj.org/PIAA/




Lab results with PIAA coronagraph + FPAO
with 32x32 MEMs DM

FPAO loop OFF FPAO loop ON dark hole
created by the
wavefront

Detector
control

saturation
and blooming

Central source
position

diffraction ring
at 4.5 A/D

0.0001 0.0011E 10002 0J0C25  0.0003 000035 0.0004 0.00045

See also results obtained at JPL HCIT & Princeton
So far, these results are obtained at <| Hz: making FPAO run at ~kHz
is challenging (detector, algorithms)
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PIAA Coronagraph allows imaging of Earths/SuperEarths
with probe-scale mission

Telescope size and Earth SuperEarth SuperEarth Jupiter Jupiter
coronagraph type @ 1 HZ @ 1 HZ @ 1.8 HZ @l1AU @5AU
albedo 0.3 albedo 0.3 albedo 0.3 albedo 0.6 albedo 0.6

1.0 m PIAA 5 13 23 21 437
1.4 m PIAA (PECO) 20 38 356 52 1179

1.8 m PIAA 41 79 127 103 2545
1.4 m Shaped Pupil 2 2 - 15 131

Table 1.2-1 Number of FGK main sequence stars around which different planet types can be detected
(SNR=5 at R=5 at 0.55 micron) with an ideal (perfect wavefront) 1.4m PIAA telescope adn other telescope
diameter/coronagraph combinations. Details of this simulation can be found in Guyon et al. 2006. This table
assumes a 1 zodi cloud around each star and a 50% throughput loss due to coatings and detector. The
numbers given are for 20% detection probability for a single 1 day exposure with no prior information on the
planet location, corresponding to 90% probability of at least one detection in 10 uncorrelated visits. Super

Earths are assumed here to have 2x Earth radius. The HZ unit denotes the distance at which an Earth-like
planet would have the same temperature as the Earth.

Science is steep function of telescope diameter
PECO design could be applied to larger telescope size




A ‘“difficult” PECO target

PECO one day image in 0.4-0.5 micron
band of an Earth/Sun system analog at
4.5 pc

lllustrates:
- very high SNR detection of exozodi
- risk of confusion with exozodi
- risk of confusion with other planets
“Earths” are at limit of PECO
super-Earths are significantly easier
- High contrast needs to be maintained
at le-10




PECO’s goal is to image and characterize nearby exoplanetary
systems (Planets + dust) down to Earth/”SuperEarth” mass

edeep survey:

50 targets (~2/3 of observing time)
elarge survey:

+150 targets (~1/3 of observing time)

Spectral characterization at R~20

-> Planets orbits, colors and map
of exozodi cloud

-> understand planetary systems %0.4 05 S o8 0.9
architecture & habitability

Figure 1.2-1 PECO Spectral Bands. Earth’s atmosphere has a
relatively constant albedo across the PECO bands, with a
slight absorption near 600 nm due to ozone. EGPs like Jupiter
will have relatively flat spectra, with deep methane absorption
in the red adjacent to bright continua arising from clouds.
Cooler, lower gravity, and/or methane-rich ice giants like
Uranus & Neptune are bluer and much darker in the red.




What can we learn about exoplanets
with PECO and other missions !

Radial Velocity, Astrometry PECO
Orbit Brightness
Mass Spe.ctr.a.

Variability

/ Exozodiacal dust
!

Constraints on planet size, internal structure
Atmosphere composition, temperature
Planetary system dynamics, history & evolution




Technical challenges

Coronagraph -> Manufacturing, Wavefront control
Pointing stability/calibration
Telescope wavefront stability
vibration isolation & good thermal design
drift-away orbit
Detectors

~zero readout noise visible CCD are now available
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9.5 PIAA optics sets made so far:

| refractive PIAA system, diamond turned plastic [NAO]]

2 reflective PIAA systems, Nickel-plated diamond turned Al (| design x2) [Axsys]
6 refractive PIAA systems, diamond turned CaF2 (3 designs x2) [Axsys]

+ | reflective PIAA system, Zerodur, currently in manufacturing [ Tinsley]

Light intensity







Subaru lab experiment

co-funded by Subaru/NAQOJ & JPL

Pupil |
(apodizer) light source. FPIAA M2
Fold mirrors (2) 1R T L2
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4 mm pupil size

2006/12/13
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Lab results with PIAA coronagraph + FPAO

Step 1: phase diversity -> DM correction
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Post-PIAA pupil plane Fully apodized beam
apodized beam | _— 0<r<rl:maskis opaque : light blocked
. Post-PIAA apodizer

—— rl<r<r2: mask is reflective : light sent to LOWFS

Telescope pupil plane /
non-apodized beam = r>r2 : mask is transparent : light sent to science path

Focal Plane Mask

light from telescope

———
——

~ to science path
—— %

T
Fully accchz:-bearf —

“Apodizer amplit ude transmission ------- Off-axis

2ost-FlAA apodized beam
Parabola

(or lens) defocused image

Low Order Wavefront Sensor (LOWES)

S—
0.4 0.6
Pupil radius

Fig. 1.— Optical layout of a coronagraphic low order wavefront sensor system, shown here with a PTAA
coronagraph. See text for details.

Guyon, Matsuo, Angel, 2008 - to be submitted
Can also be applied to phase mask type coronagraphs (Matsuo & Guyon, in preparation)




Fig. 9.— CLOWFS focal plane mask used in the
PIAA coronagraph laboratory testbed at Subaru
Telescope. The 100 micron radius mask center is
opaque (low reflectivity), and is surrounded by a
100 micron wide highly reflective annulus. The sci-
ence field, transmiting light to the science camera,
extends from 200 micron to 550 micron radius.

Why a central dark spot!?

(1) Signal amplification
(2) Accurate reference
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TABLE 1
POINTING STABILITY REQUIREMENTS FOR A PIAA CORONAGRAPH WITH AND WITHOUT CLOWEFS #

Without CLOWEFS  With CLOWES

Required pointing calibration accuracy 0.0016 A/D (0.13 mas)
Maximum RMS pointing excursion 0.005 A/D (0.4 mas)

Required sampling time” 5 s" 38 us
Maximum allowed uncalibrated pointing drift rate 0.026 mas/s 3.4 arcsec/s

“For a my = 6 star observed with a 1.4-m telescope in a 0.2um wide band centered at 0.55 um with a 50% system
throughput.

®Sampling time required to measure the pointing error with a 1-¢ error equal to the "Required pointing calibration
accuracy”.

“Assumes that 50% of the observing time is dedicated to measurement of low order aberrations. Also assumes that
the signal is well above readout noise and zodi/exozodi background.




