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ABSTRACT

Many high contrast coronagraph designs have recently been proposed. In this paper, their
suitability for direct imaging of extrasolar terrestrial planets is reviewed. We also develop a linear-
algebra based model of coronagraphy that can both explain the behavior of existing coronagraphs
and quantify the coronagraphic performance limit imposed by fundamental physics. We find that
the maximum theoretical throughput of a coronagraph is equal to one minus the non-aberrated
non-coronagraphic PSF of the telescope. We describe how a coronagraph reaching this funda-
mental limit may be designed, and how much improvement over the best existing coronagraph
design is still possible. Both the analytical model and numerical simulations of existing designs
also show that this theoretical limit rapidly degrades as the source size is increased: the “highest
performance” coronagraphs, those with the highest throughput and smallest Inner Working An-
gle (IWA), are the most sensitive to stellar angular diameter. This unfortunately rules out the
possibility of using a small IWA (< λ/d) coronagraph for a terrestrial planet imaging mission.

Finally, a detailed numerical simulation which accurately accounts for stellar angular size,
zodiacal and exozodiacal light is used to quantify the efficiency of coronagraph designs for direct
imaging of extrasolar terrestrial planets in a possible real observing program. We find that in
the photon noise limited regime, a 4m telescope with a theoretically optimal coronagraph is
able to detect Earth-like planets around 50 stars with 1hr exposure time per target (assuming
25% throughput and exozodi levels similar to our solar system). We also show that at least 2
existing coronagraph design can approach this level of performance in the ideal monochromatic
case considered in this study.

Subject headings: Techniques: high angular resolution, (Stars:) planetary systems, Telescopes

1. Introduction

Direct imaging and characterization (through
low resolution spectroscopy) of extrasolar terres-
trial planets (ETPs) is an exciting but challeng-
ing scientific application of coronagraphy. While
the angular separation is well within the reach of
a mid-sized telescope in the visible, the high star-
planet contrast (about 1010 in the visible) requires
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a wavefront stability that can only be obtained
with a space telescope. The low apparent luminos-
ity of an Earth-like planet (mV ≈ 29 for an Earth
at 10pc) requires the precious planetary photons
to be well isolated from the stellar light; otherwise,
photon noise from the stellar light drives the ex-
posure time unreasonably high and speckles from
the stellar image, if not calibrated, prevent detec-
tion. A system capable of delivering 1010 contrast
at less than 0.1” is therefore required for efficient
detection and characterization of ETPs around a
reasonably large (≈30) sample of nearby stars.

The purpose of this work is to identify and
quantify how fundamental physics imposes hard
limits on what coronagraphs can achieve for the
detection of terrestrial planets, and to compare
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these limits with what existing coronagraph de-
signs can achieve.

Coronagraphs designs simulated in this work
are introduced and §2, where they are tentatively
grouped in a four families. The configuration
adopted for each design in this study is also de-
scribed. In §3, a metric to quantify coronagraph
performance is proposed, allowing existing coron-
agraph designs to be evaluated in the “ideal” case
(monochromatic light, unresolved central star). A
theoretical limit of coronagraph performance in
this ideal case is also derived. In the next 2
sections, we closely look at the most fundamen-
tal (unavoidable) deviations from this ideal case,
and their effects on coronagraphic performance:
stellar angular size (§4) and presence of a zodi-
acal/exozodiacal background (§5). Finally, a de-
tailed simulation of coronagraphic observations of
a sample of nearby stars is performed in §6 to de-
rive the efficiency of coronagraphs for detection of
ETPs.

2. Brief description of existing corona-
graph designs

The coronagraphs studied in this work (see Ta-
ble 1) are all the coronagraphs known to us to
theoretically achieve a 1010 PSF contrast within
5 λ/d of the central source, as illustrated in Fig-
ure 1. It is impossible to compare all the differ-
ent kinds of coronagraph designs that have been
suggested in all their details. But without these
concrete examples, we could not communicate our
new perspective and illustrate what are the fun-
damental physical effects limiting coronagraphic
performance. We offer this brief summary of pre-
vious work as historical background prior to using
these designs. More detailed descriptions of these
coronagraphs can be found in the references given
in this section.

We only consider in this paper unobstructed cir-
cular pupils. We note that several techniques have
been proposed to adapt ”unfriendly” pupil shapes
(central obstruction, spiders) to specific corona-
graphs (Soummer 2005; Murakami & Baba 2005).

2.1. “Interferometric” coronagraphs (AIC,
VNC, PSC)

These coronagraphs look much like nulling in-
terferometers: they rely on interferometric combi-

nation of discrete beams derived from the entrance
pupil.

• AIC: The Achromatic Interferometric Coro-
nagraph (Gay & Rabbia 1996; Baudoz et al.
2000) uses a beam splitter to destructively
combine 2 copies of the entrance pupil, one
of them achromatically π-phase shifted and
flipped. The final image exhibits a 180 de-
gree ambiguity which may be removed at the
expense of loosing achromaticity (Baudoz et
al. 2005). The Common Path Achromatic
Interferometric Coronagraph (CPAIC) de-
veloped by Tavrov et al. (2005) achieves the
same achromatic π-phase shifted and flipped
nulling with a common path interferometer,
and is therefore optically more robust.

• VNC: The Visible Nulling Coronagraph, 4th

order (Mennesson et al. 2003) is the coro-
nagraph equivalent of a double-Bracewell
nulling interferometer. Two successive
shears in perpendicular directions produce
4 beams, which, when combined, yield a
4th order null in the pupil plane. By pro-
ducing an image from the nulled pupil, this
coronagraph combines a deep null with good
imaging capabilities. In this paper, the shear
distance is chosen to be 30% of the pupil size,
which places the first transmission maximum
(36% throughput) at 2.35λ/d from the opti-
cal axis. Increasing the shear distance allows
smaller IWA, but reduces the throughput.
We note that another coronagraph, the 4th

order band limited coronagraph (see §2.3)
could be designed to perform the same pupil
shear and nulling operations. Both designs
are simply two different optical implementa-
tions of the same principle, and are referred
to as VNC/BL4(1) in this paper.

• PSC: In the Pupil Swapping Coronagraph
(Guyon & Shao 2006), parts of the pupils
are geometrically swapped prior to destruc-
tive interferometric combination, thus avoid-
ing the throughput loss due to the shear
in the VNC. The PSC design considered in
this work is the 4th order PSC described in
Guyon & Shao (2006).
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Table 1

Coronagraphs able to achieve 1010 PSF contrast within 5 λ/d

Coronagraph abrev. reference Design(s) adopted

“Interferometric” Coronagraphs

Achromatic Interferometric Coronagraph AIC Baudoz et al. (2000)
Common-Path Achromatic Interferometer-Coronagraph CPAIC Tavrov et al. (2005) (=AIC)

Visible Nulling Coronagraph, X-Y shear (4th order null)a VNC Mennesson et al. (2003) Shear distance = ±0.3 pupil radius
Pupil Swapping Coronagraph PSC Guyon & Shao (2006) Shear distance = 0.4 pupil diameter

Pupil apodization

Conventional Pupil Apodization and Shaped-Pupilb CPA Kasdin et al. (2003) Prolatec(r = 4.2λ/d, 8% throughput)
Achromatic Pupil Phase Apodization PPA Yang & Kostinski (2004) φ = φ2(x) + φ2(y); a = 2; ε = 0.01
Phase Induced Amplitude Apodization Coronagraph PIAAC Guyon (2003) Prolate apodization
Phase Induced Zonal Zernike Apodization PIZZA Martinache (2004) Not simulated

Improvement on the Lyot concept with amplitude masks

Apodized Pupil Lyot Coronagraph APLC Soummer et al. (2003) r = 1.8λ/d
Apodized Pupil Lyot Coronagraph, N steps APLCN Aime & Soummer (2004) (N, r) = (2, 1.4); (3, 1.2); (4, 1.0)

Band limited, 4th ordera BL4 Kuchner & Traub (2002) sin4 intensity mask, ε = 0.21

Band limited, 8th order BL8 Kuchner et al. (2005) m = 1, l = 3, ε = 0.6

Improvement on the Lyot concept with phase masks

Phase Mask PM Roddier & Roddier (1997) with mild prolate pupil apod.
4 quadrant 4QPM Rouan et al. (2000)
Achromatic Phase Knife Coronagraph APKC Abe et al. (2001) (=4QPM)
Optical Vortex Coronagraph, topological charge m OVCm Palacios (2005) m = 2, 4, 6, 8
Angular Groove Phase Mask Coronagraph AGPMC Mawet et al. (2005) (=OVC)

Optical Differentiation ODC Oti et al. (2005) mask: x × exp −(x/10)2 d

aThe Visible Nulling Coronagraph (VNC) and Band limited 4th order (BL4) coronagraphs belong to the same class of pupil-shearing 4th order
coronagraphs, and are simply 2 ways of achieving the same result. They can be designed to have exactly the same performance. In this Table,
the VNC is chosen with a small IWA and 2 orthogonal shear directions, while the BL4 is designed with a larger IWA and 2 shears in the same
direction. To reflect this similarity, they are referred to as VNC/BL4(1) for the small IWA option (listed as VNC in this Table) and VNC/BL4(2)
for the large IWA option (listed as BL4 in this Table).

bThe CPA design adopted here is a continuous apodization (rather than binary apodization/shaped pupil) which maximizes the radially averaged
performance at ≈ 4λ/d. More optimal designs exist in other conditions: CPA with high contrast at specific position angles for observations at
≈ 3λ/d or high throughput CPA for observations at > 4λ/d.

cCPA, APLC, APLCN : r is the radius, in λ/d, of the mask within which the circular prolate function is invariant to a Hankel transform. This
parameter is half of the mask diameter a defined in Soummer et al. (2003).

dODC: x is in λ/d. Maximum mask transmission at 7λ/d. Lyot pupil mask radius = 0.85 times pupil radius.
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Fig. 1.— Simulated monochromatic images of a 1010 contrast system, 1λ/d to 4λ/d separation, for some of
the coronagraphs listed in Table 1. The central source was assumed to be a single point (angular diameter =
0). The white number in each image is the coronagraph throughput for the off-axis source. The pixel scale
is the same for all images, but the brightness scale is not. The companion is moving on a diagonal (rather
than horizontal) line for the VNC, PSC, PPA and 4QPM coronagraphs.

2.2. Pupil apodization coronagraphs (CPA,
PPA, PIAA, PIZZA)

The pupil complex amplitude can be modified
to yield a PSF suitable for high contrast imaging,
a property used by many coronagraph concepts.

2.2.1. Conventional Pupil Apodization (CPA)
with amplitude masks

Apodization can be performed by a pupil plane
amplitude mask (Conventional Pupil Apodiza-
tion - CPA), which can be continuous (Jacquinot
& Roisin-Dossier 1964; Nisenson & Papaliolios
2001; Gonsalves & Nisenson 2003; Aime 2005b)

or binary (Kasdin et al. 2003; Vanderbei et al.
2003a,b, 2004; Aime 2005b). Apodization by
Mach-Zehnder type pupil plane interferometry
was also suggested by Aime et al. (2001) to pro-
duce a continuous apodization, but is not explored
in this work.

Within the CPA “family”, we adopt for our
comparative study a prolate spheroidal apodized
pupil design (Slepian 1965; Aime et al. 2002; Kas-
din et al. 2003; Soummer et al. 2003; Vanderbei
et al. 2003b), optimally tuned, according to the
performance criteria defined in §3.1, for a 4λ/d
angular separation. In this design, the apodizer
transmits 8% of the light, and at 4λ/d separation,
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exactly half of this light is detectable according
the the criteria defined in §3.1. This apodization
is nearly identical to the general prolate apodiza-
tion function shown in Figure 8 of Vanderbei et al.
(2003a).

Design tradeoffs

In CPAs, tradeoffs exist between IWA, throughput
and “discovery space” (fraction of the field of view
usable for planet detection). A description of these
tradeoffs can be found in Kasdin et al. (2003), and
they have been extensively explored for the design
of binary masks/shaped pupils (Vanderbei et al.
2003a,b, 2004). For example, in the checkerboard-
mask design proposed in Figure 1 of Vanderbei
et al. (2004), the PSF surface brightness reaches
10−10 at 2.8λ/d, but at this separation, the com-
panion needs to be on the diagonal to be observed,
and only a quarter of its light then falls in a
“black” quadrant. In this particular small-IWA
design, at 2.8 λ/d, the peak throughput is then
3.8% for a square pupil, and the radially averaged
throughput is ≈2%. At large (> 4λ/d) separation,
the average and peak throughputs are 15.1%. Our
prolate spheroidal apodization is not the optimal
design if peak throughput is to be maximized (in
this case, the “single prolate” shaped pupil de-
scribed in Kasdin et al. (2003) seems much su-
perior). Our choice is therefore not optimal if
the companion’s position is previously known, in
which case it could be intentionally placed at a
given position angle.

Binary vs. continuous apodization

Binary pupil masks have the advantage of being
achromatic and significantly easier to manufac-
ture than continuous transmission masks. This
technological advantage however comes at a non-
negligible cost in planet detection performance:

• In the PSF delivered by a non-obstructed,
non-apodized circular aperture (Airy pat-
tern), 84% of the energy transmitted by the
pupil is contained in the central diffraction
spot; if the pupil is apodized with a continu-
ous mask, this fraction is close to 100% (but
the spot is larger and less light is transmitted
by the mask). In the PSF delivered by bi-
nary apodization masks, this fraction is typ-

ically about 50%: there is a factor ≈ 2 differ-
ence between the mask throughput and the
“Airy throughput” (Kasdin et al. 2003) use-
ful for detection. Within the central diffrac-
tion spot of a planet’s image, the planet
flux is proportional to the Airy through-
put while the background light contribu-
tion is proportional to the mask through-
put. Binary masks therefore “amplify” the
amount of background light mixed with the
planet image. This effect, discussed in §5.1
is also found in sparse aperture interferom-
eters, where additional background light is
collected from the secondary lobes.

• The difference between mask throughput
and Airy throughput is diffracted in regions
of the PSF where planet detection is im-
possible. In a properly designed mask, this
unwanted light avoids a large central region
around the PSF’s center.

As the number of openings or slits in a binary
mask increases, these two effects become less of
a concern, and the mask asymptotically becomes
identical to a continuous mask.

2.2.2. Pupil Phase Apodization (PPA)

If only one half of the focal plane is consid-
ered, an amplitude pupil apodization can be re-
placed by a phase-only apodization (Pupil Phase
Apodization, PPA), just as phase corrections in
the pupil can only cancel focal plane speckles in
one half of the field of view. High contrast imaging
with phase apodization was proposed by Yang &
Kostinski (2004), who found solutions for broad-
band imaging and obtained contrast/throughput
performances similar to amplitude apodization de-
signs (although only over a quarter of the field
of view). Codona & Angel (2004) independently
computed a PPA solution for the Hubble Space
Telescope pupil to suppress diffraction in half of
the field of view. The PPA design adopted in this
work uses a square pupil mask and the sum of two
identical phase apodizations (equation 6 in Yang
& Kostinski (2004)), one in the x-direction, the
other in the y-direction.

Although the PPA mask has a 100% through-
put within the square aperture, it exhibits large
phase slopes at its edges, which are necessary to
suppress diffraction in a quarter of the field but
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significantly increase the intensity of diffracted
light in other parts of the field, reduce the amount
of light in the central core of the PSF and broaden
the PSF core. Just as for binary amplitude
apodization masks, the PPA’s large ratio between
the pupil mask throughput (here equal to 0.6
- area of the largest square that fits within the
pupil) and the light concentrated in the PSF core
(≈ 0.3) is problematic in the presence of zodiacal
and exozodiacal backgrounds.

2.2.3. Phase-Induced Amplitude Apodization Coro-
nagraph (PIAAC)

This coronagraph uses a lossless amplitude
apodization of the pupil performed by geomet-
ric redistribution of the light rather than selective
absorption (Guyon 2003; Traub & Vanderbei 2003;
Guyon et al. 2005; Vanderbei & Traub 2005; Mar-
tinache et al. 2006; Vanderbei 2006; Pluzhnik et
al. 2006). The same beam remapping technique
is known as beam shaping in laser science (Shealy
2002) and radio astronomy.

The geometrical remapping of the telescope
pupil amplifies phase slopes, therefore enabling
observations at angular separations ≈ 3 times
smaller than with a conventional amplitude apodiza-
tion. Two designs are considered in this work:

• PIAA: The detection occurs in the first
focal plane after the beam remapping.
Starlight therefore falls on the detector but
is concentrated in a single diffraction spot.
This design is adopted for practical reasons
in §3 and §4 to avoid having to tune a focal
plane mask diameter.

• PIAAC: A focal plane mask occults starlight
in the first focal plane. An inverse beam
remapping unit then restores the original
pupil to recover field of view. While a fo-
cal plane mask size needs to be chosen for
this design, it is adopted in §6 to maintain
a sharp planet image over the zodi and exo-
zodi backgrounds.

2.2.4. PIZZA

An interesting alternative to CPA techniques
is Phase Induced Zonal Zernike Apodization,
PIZZA, (Martinache 2004), which achieves the

pupil amplitude apodization without compromis-
ing the telescope’s throughput or angular resolu-
tion. PIZZA, which is not simulated in this work,
may be too chromatic to be practically suitable
for imaging ETPs. The IWA delivered by PIZZA,
CPA and PPA are similar.

2.3. Improvements of the Lyot coron-
agraph design (APLCs, BLs, PM,
4QPM, OVCs, ODC)

In a Lyot coronagraph, the telescope pupil and
the focal plane mask are not perfectly fitted one
for another, resulting in strong stellar leaks (much
higher than the 10−10 goal) within the corona-
graph’s Lyot stop. For a Lyot coronagraph to de-
liver high contrast performance, the complex am-
plitude in the “intermediate” focal plane (equal
to the Fourier transform of the entrance pupil
multiplied by the focal plane occulter) needs to
be “band-limited”: its Fourier transform (= com-
plex amplitude in the Lyot pupil plane) should
have nearly zero power in a frequency range which
is then selectively transmitted by the Lyot pupil
stop. Improved performance over the original Lyot
design can therefore be obtained by either :

• Adapting the pupil to the hard edge fo-
cal plane mask. This is achieved in the
Apodized Pupil Lyot Coronagraph, APLC,
described in Soummer et al. (2003), where
the entrance pupil of a Lyot coronagraph
with a hard edge focal plane occulter is op-
timally apodized. A slightly different ap-
proach, explored by Vanderbei et al. (2004)
(see Figure 3 of the paper), is to apodize
the pupil after the hard edge focal plane oc-
culter. As suggested by Aime & Soummer
(2004), the output of an APLC can be used
as the input of a second stage APLC: these
are the multistep APLCs (noted APLCN ,
where N is the number of steps).

• Adapting the focal plane mask to the tele-
scope pupil. This is achieved by using “band
limited masks” in the focal plane: the 4th

order band limited coronagraph, BL4 (Kuch-
ner & Traub 2002) and 8th order band
limited coronagraph, BL8 (Kuchner et al.
2005). A visible nuller interferometer (VNC)
equivalent to the BL4 coronagraph design
adopted in this work could be designed,
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and we therefore refer to this BL4 design
as VNC/BL4(2).

Phase mask coronagraphs (PM, 4QPM, OVC,
ODC) introduce phase shifts in the focal plane.
This allows smaller IWAs than offered by APLCs
and BLs.

• PM: The Phase Mask coronagraph (Roddier
& Roddier 1997) uses a circular π-shifting fo-
cal plane mask, and, to allow 1010 contrast,
a mild pupil amplitude apodization (Guyon
& Roddier 2000; Soummer et al. 2003).

• 4QPM: The 4-Quadrant Phase Mask (Rouan
et al. 2000) uses a focal plane mask which
shifts 2 out of 4 quadrants of the image by
π. The achromatic phase knife coronagraph
(Abe et al. 2001) is another form of 4QPM.

• OVC: In the Optical Vortex Coronagraph
(Palacios 2005; Foo et al. 2005; Swartzlander
2006) and the Angular Groove Phase Mask
Coronagraph (Mawet et al. 2005), a focal
plane vortex phase mask replaces the 4 quad-
rant phase mask of the 4QPM, thus avoid-
ing the “dead zones” of the 4QPM. In (r, θ)
polar coordinates, the mask phase is equal
to mθ, where m is the topological charge.
OVCs with high topological charges (m > 2)
exhibit low sensitivity to low-order aberra-
tions.

• ODC: The Optical Differentiation Corona-
graph (Oti et al. 2005) is using a phase and
amplitude focal plane mask.

2.4. Other coronagraph designs & tech-
niques not studied in this work

Some of the designs listed in Table 1 may be
combined in series. The multistep APLC concept
(Aime & Soummer 2004) illustrates how such a
“cascade” can simultaneously improve IWA and
throughput by designing each step for a lower con-
trast level. Nishikawa et al. (2005) showed how
a nulling interferometer can benefit from a CPA,
and a similar combination may also be advanta-
geous on a circular pupil (VNC-CPA for exam-
ple). The entrance pupil apodization required for
the APLCs may be performed by a PIAA unit to

improve IWA and throughput. Although combi-
nations of coronagraphic techniques are not stud-
ied in this paper, the results obtained on individ-
ual designs can provide a good insight into which
combinations may be most beneficial.

Pupil replication (Greenaway et al. 2005) has
been proposed to transform a phase slope (equiv-
alent to angular separation on the sky) into phase
discontinuities in the replicated pupil. For the
off-axis planet, this creates secondary diffraction
peaks far from the central source image. The au-
thors pointed out that it could enhance the per-
formance of a coronagraph with which it would
be combined. Riaud et al. (2005), in a sensitiv-
ity study of pupil replication, suggested to use it
after a 4QPM. The tip-tilt sensitivity of both tech-
niques (pupil replication introduces phase steps in
the wavefront of an off-axis source; see §4.1 for
the 4QPM) may be a concern for direct imaging
of terrestrial planets.

A coronagraphic effect can be obtained by plac-
ing an occulting screen, at least as big as the tele-
scope diameter, between the star and the tele-
scope (Cash et al. 2005). This external occul-
ter needs to be designed to not diffract starlight
within the telescope aperture, needs to be placed
far from the telescope (on a separate spacecraft),
and the telescope-occulter-star alignment needs to
be maintained during observations. While main-
taining the alignment is especially challenging,
a “conventional” imaging telescope can be used
without the need for exquisite control of wavefront
aberrations.

3. Coronagraph performance for a monochro-
matic point source

3.1. A coronagraph performance metric:
the ”useful throughput”

Since we aim at quantitatively comparing the
performance of coronagraph designs, we need a
”fair” performance metric: one that can be ap-
plied uniformly to all coronagraph designs. Coro-
nagraph performance is usually quantified with In-
ner Working Angle (usually defined as the min-
imal angular distance at which the throughput
for the planet is half of the maximal through-
put), throughput (measured at large angular sepa-
ration), and search area (fraction of the focal plane
image within which a planet can be detected). The
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IWA is somewhat arbitrary, as there is no well-
defined stellar-to-companion light ratio threshold
beyond which companion light suddenly becomes
unmeasurable. IWA is coupled with throughput:
for example, a coronagraph with a 10% maximum
throughput achieving 5% throughput at 1 λ/d has
a smaller IWA than a coronagraph with a 100%
maximum throughput achieving 30 % through-
put at 1 λ/d. In this example, the larger IWA
coronagraph outperforms the smaller IWA coron-
agraph. Search area is also somewhat arbitrary
and often cannot be quantified as a single num-
ber. For example, diffraction from 4 spider vanes
in 2 perpendicular directions (we assume here that
the width of the diffraction spikes created by the
spiders is equal to the IWA of the coronagraph)
covers ≈ 100% of the field of view at the IWA and
≈ 0% at large angular separations. Metrics com-
monly used to quantify coronagraph perfor-
mances (IWA, throughput and search area)
are therefore difficult to use to directly com-
pare coronagraph designs.

A simpler, more direct measure of how well a
coronagraph can separate planet light from star
light, the “useful throughput”, is proposed here.
It is defined as the amount of planet light which
can be used toward detection, and is expressed as
a function of the planet position relative to the
star and the planet/star contrast. When averaged
over all position angles, it conveniently quantifies
the coronagraph performance with a single num-
ber (making it possible to directly compare coron-
agraph performances), function of the angular sep-
aration. This function accurately includes the ef-
fects of IWA, throughput and search area, and is a
good estimation of the coronagraph performance.

To compute this quantity, we must first de-
fine when planet light in the coronagraph detec-
tor plane becomes “unusable” because of excessive
starlight mixed with it. Theoretically, direct de-
tection of companions embedded in much brighter
starlight is possible if the starlight component on
the image is well characterized. Practically, due
to calibration problems and photon noise (exo-
planets are faint), companion light mixed with
much brighter starlight is unusable. There is how-
ever no well-defined stellar-to-companion light ra-
tio threshold beyond which companion light be-
comes unmeasurable: the criteria we will use to
define the ”useful throughput” (hereafter denoted

throughput) is therefore somewhat arbitrary.
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Fig. 2.— Graphical representation of the useful
throughput. In this 1-D example, the stellar and
planet PSF are shown with some overlapping. The
useful throughput is obtained by integrating the
companion (planet) light from x ≈ 0.7 to x ≈ 3.2;
in this interval, the integrated flux contributions
from the central source and the companion are
equal.

As illustrated in Figure 2, the “useful through-
put” is the maximum fraction of the planet’s light
gathered by the telescope which can be separated
from starlight. The “separation” criteria used is
that, integrated over the area of the focal plane
considered, there is as much planet light as there
is residual stellar light. Physically, this area may
be a single pixel or a group of pixels on a focal
plane array detector.

To compute the useful throughput of a corona-
graph at a particular location in the image plane,
we first model the images Is(x, y) and Ip(x, y) pro-
duced respectively by a star and a much fainter
planet in the coronagraph. Pixels are then sorted
in decreasing order of Ip(x, y)/Is(x, y); for the first
pixels in this sorted list, a large fraction of the
light collected originates from the planet while the
last pixels of this list are dominated by starlight.
The number n is chosen such that, over the first
n pixels of this list, the total starlight collected is
equal to the total planet light collected. This total
amount of planet light, divided by the the flux in
planet light that is collected by the entrance aper-
ture, is the useful throughput. We note that
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if, on every pixel of the image, starlight exceeds
planet light, then the useful throughput will be
zero.

3.2. Useful throughput of existing corona-
graph designs

Figure 3 shows the useful throughput for the
coronagraphs listed in Table 1. For small angu-
lar separations (< 1λ/d) the AIC is the most ef-
ficient coronagraph, with a 50% useful through-
put at 0.5λ/d. Based on our assumptions, the
phase mask coronagraphs (especially OVC2, PM
and 4QPM) and PIAA are the best choices from
0.5λ/d outward. Many coronagraphs in this list
never achieve a very high throughput because of
strong entrance pupil apodization (CPA, APLC,
and to a lesser degree APLCN), beam splitting
(PSC,VNC), or pupil diaphragming (VNC/BL4,
BL8). The range of performance is very large: the
AIC offers an IWA about 8 times smaller than
the CPA, and the PIAA’s throughput is about 10
times the CPA’s throughput beyond 5λ/d.

Many of the coronagraph designs studied in
this paper were developed in the last few years,
and there is therefore hope that a large number
of other coronagraph designs will be discovered
in the near future. It is particularly interesting
to wonder how much of the upper left area of
Figure 3 (high throughput at small angular dis-
tance) can/will be accessed. In the following sec-
tion, we derive a fundamental limit of coronagraph
throughput (shown in Figure 3) using a ”univer-
sal” model of coronagraphs.

3.3. Theoretical upper limit for the coro-
nagraph throughput

3.3.1. Coronagraph model

We consider an optical system, shown in Figure
4, in which light enters through a pupil (which may
or may not be circular) which we represent by a
finite (but large) number N of regularly spaced
elements. Similarly, the output of this optical sys-
tem, defined by the points at which light is de-
tected, blocked or exits the system, is represented
by N points. To a coherent light source (such as a
point source at infinity) corresponds a distribution
of complex amplitude at the pupil of this system,
written here as a vector A of N complex numbers.
Although A is written as a vector, it represents a

2D distribution of complex amplitude across the
pupil: each of its coefficient is the complex am-
plitude of the incident wave across one of the N
elements in the entrance pupil. We note that this
description is only valid to the extent that com-
plex amplitude is constant across each pupil ele-
ment - this limitation is equivalent to a field of
view limit in the focal plane, and our model is
therefore not suitable for point sources at more
than ≈

√
Nλ/(2d) from the optical axis. For con-

venience, we choose to normalize this vector such
that the total light intensity in the pupil is unity
(||A||2 = 1).

Optical systems are (usually) linear in complex
amplitude: the complex amplitude anywhere in
the system can be written as a linear combination
of complex amplitudes in the entrance pupil. For
example, Fourier transforms and Fresnel propaga-
tion simulations are linear operations commonly
performed to compute coronagraphic images. The
output complex amplitude vector B can therefore
be written as:

B(α) = UA(α) (1)

where U is a NxN complex matrix which entirely
describes the optical system and α is the point
source position in the sky. The output vector B in-
cludes light that is blocked by masks (turned into
heat), exits the system (for example, reflected back
to the sky) or falls on the detector (these are the
only coronagraph outputs that can be measured
and therefore used for planet detection). Conser-
vation of energy in the system imposes ||B||2 =
||A||2: U is therefore a complex unitary ma-
trix, function of the coronagraph optics, but
independent of the entrance wavefront (and
therefore independent of the source position α in
the sky). Wavefront control elements, if present,
are also part of U .

As illustrated in Figure 4, in a coronagraph,
the goal is to create system output(s) for which an
on-axis source will produce very little light, but a
closeby off-axis source’s flux will be transmitted.
Mathematically speaking, a matrix U needs to be
chosen such that some coefficients of B(α) (we de-
note n < N the number of such coefficients) are
very small for α ≈ 0, but relatively high for other
values of α. To this set of coefficients corresponds
a sub-space Ω of dimension n (shown as the bot-
tom part of vector B on Figure 4).
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The central source is assumed here to be monochromatic and infinitively small.

The coronagraph optimization problem can be
further restricted by fixing a 2D vector A(αp),
where αp is the planet off-axis position at which
the coronagraph’s throughput is to be maximized.
In this case, a change of coordinate system (rota-
tion) within the sub-space Ω can concentrate all
the planet flux within Ω on a single coefficient.
This change of coordinate system is a function of
αp, and aligns, within Ω, the 2D vector A(αp) with
one of the directions of the new coordinate system.
Physically this is equivalent to placing multiple
beam splitters and phase shifters to concentrate
all of the planet light within Ω in a single output
beam: this would be possible thanks to the fact
that planet light is fully coherent.

This norm-preserving coordinate change is itself
a unitary matrix which can be integrated within
U (by direct multiplication with the “old ” U), in
which case only a single column of this new U ma-
trix is now relevant to the problem: we denote C
this column (C is a vector). Since U is unitary,
||C|| = 1. In this new basis, |C • A(α)|2 is the
square absolute value of one of the coefficients of
the new vector B and is equal to the coronagraph
throughput at the sky position α: it is therefore
the quantity to be minimized for α = 0 and max-
imized for α = αp.

3.3.2. Coronagraphic throughput upper limit in
the ideal case.

We use in this section the new base described
at the end of the previous section, where the sub-
space Ω corresponds to a single coefficient of B. In
this “optimized coronagraphic projection”, the en-
ergy in this single coefficient is the useful through-
put of the coronagraph, as long as, within this
single “pixel”, the stellar flux is smaller than the
planet flux. Excluding all other coefficients of B,
we can now equivalently refer to the coronagraph
throughput or useful throughput.

We denote ε the on-axis coronagraph through-
put (no more than 10−10 for a system designed
to image ETPs in the visible) and A(0) the input
complex amplitude for an on-axis source. We note
that ε is a throughput, not a contrast, and should
therefore ideally be no more than 10−10 times the
coronagraph throughput for the planet. It is now
possible to design an ideal theoretical coronagraph
for detecting a source at the position αp by choos-
ing a complex vector C of norm 1 such that:

1. |C •A(0)|/|C •A(αp)| <
√

ε: this is the coro-
nagraphic “contrast” at position αp.

2. |C •A(αp)| is as large as possible: this is the
the square root of the coronagraph intensity
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This way of looking at the problem shows that
optimizing a coronagraph is equivalent to choos-
ing a projection axis C which is “mostly” perpen-
dicular to A(0) (constraint (1)) and as co-linear
as possible with A(αp) (constraint (2)). A glance
at Figure 5 reveals that if A(αp) and A(0) are
close (ie. the planet position αp is close to the op-

tical axis), the coronagraphic throughput cannot
be high. As shown in Figure 5, the input vector
A(αp) can be decomposed into an “along optical
axis” component and a “perpendicular to optical
axis” component:

A(αp) = A‖(αp) + A⊥(αp) (2)

where

A‖(αp) = [A(αp) • A(0)] A(0) (3)

is the projection of A(αp) onto A(0) (“along opti-
cal axis”).

Using this decomposition, the linearity of the
coronagraph in complex amplitude, and the |C •
A(0)| <

√
ε constraint, an upper bound can be es-

tablished for the square root of the coronagraphic
throughput:

A(αp)•C < [A‖(αp)•A(0)]
√

ε+A⊥(αp)•C. (4)

Since ε << 1 and ||C|| = 1,

[A(αp) • C] < ||A⊥(αp)||. (5)

11



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3

Angular separation (    /d)λ

C
or

on
ag

ra
ph

 th
ro

ug
hp

ut

circular pupil

gaussian apodization, 40% throughput

80% central obstruction

gaussian apodization, 10% throughput

Fig. 6.— Upper limit on the off-axis throughput
of a coronagraph for different entrance pupils.

The upper limit given by equation 5 is shown
in Figure 6 for a “normal” circular pupil (unob-
structed, unapodized) as well as for Gaussian-
apodized pupils and a pupil with a large 80%
central obstruction. Not surprisingly, amplitude
apodization decreases the throughput at all dis-
tances and also pushes further the point at which
the maximum throughput is reached (decrease in
angular resolution). With a large central obstruc-
tion, the throughput reaches its maximum value
quicker (slight increase in angular resolution).

This result shows that a coronagraph, regard-
less of its on-axis throughput (as long as it is much
smaller than 1 of course), cannot have a through-
put exceeding 50% at 0.5 λ/d for a circular pupil.
Curiously, the upper limit derived by equation 5
oscillates with distance, especially in the large cen-
tral obstruction case. This is due to a slight simi-
larity in the wavefront at 0 λ/d and ≈ 1.6λ/d for
the circular pupil case. In the extreme case of a 2-
pupil interferometer of baseline b, the same effect
would lead to a λ/b periodicity of the theoretical
maximum throughput.

Since ||A⊥||2 = ||A(αp)||2 − ||A‖||2 (right an-
gle in Figure 5), ||A(αp)|| = 1 by definition, and
||A‖(αp)||2 is the intensity of the non-aberrated
non-coronagraphic PSF at position αp (equation
3): the maximum throughput of a coro-
nagraph is equal to one minus the non-
aberrated non-coronagraphic PSF of the
telescope. In the case of a non-obstructed cir-
cular pupil, this throughput is one minus the Airy

pattern, as can be seen in Figure 6.

This last property is a direct consequence of the
linearity in complex amplitude of the coronagraph.
Since the coronagraph needs to remove the central
star, it also removes the “flat non-tilted compo-
nent” of any incident wavefront, which, expressed
as a function of the source position on the sky, is
the Airy function (for an unobstructed pupil).

3.3.3. Can this upper limit be reached in an op-
tical system ?

With the above analysis, the vector C that
would be required to reach the upper limit at a
given position αp can be computed. Each of the N
elements of the pupil can be treated as a small in-
dependent beam, and we could construct the opti-
cal system with a series of beam splitters (not nec-
essarily 50%/50%) and phase shifts. Each beam-
splitter combines 2 beams and produces 2 output
beams. Since [C • C] = 1, the problem is equiva-
lent to concentrating all the flux into a single beam
if the entrance vector (N beams) is equal to C. It
is relatively easy to do incrementally: at each step
2 beams are combined with a phase shift + beam
splitter such that all the light is sent into one out-
put beam (this is possible since the beams are fully
coherent between them and we know exactly their
amplitudes and phases). N − 1 beam splitters are
required in this scheme. If the coronagraph is only
intended to work close to the optical axis, N could
be quite small (N scales as the square of the outer
working angle), resulting in an optical system that
could possibly be built. Unfortunately, this coron-
agraph is only guaranteed to reach the theoretical
limit at a single planet position αp.

A better way to build the “ideal” coronagraph
is to have the light of an on-axis point source
entirely concentrated in a single output. This
would ensure that, for large values of N , the coro-
nagraphic throughput (now measured on N − 1
beams) is equal to the theoretical limit simulta-
neously at all source positions. Special attention
would be given to the arrangement of the beam
splitters that only affect the N − 1 “useful” out-
puts in order to allow the source position to be
easily retrieved from comparisons between their
intensities.
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4. Sensitivity to tip-tilt: the stellar angu-
lar diameter problem

4.1. Effect of stellar angular diameter in
existing coronagraph designs

The sensitivity of some coronagraphs to tip-
tilt errors has been investigated by several au-
thors (see for example Lloyd & Sivaramakrishnan
(2005); Shaklan & Green (2005); Sivaramakrish-
nan et al. (2006)).

A Sun-like star at 10pc is 1mas across: with an
8m visible telescope its apparent radius is about
0.1λ/d. Many coronagraphs cannot maintain a
1010 contrast on such an extended central source.
Even if the telescope diameter were reduced (or
the wavelength increased) such that the planet, at
maximum elongation, would be at 2λ/d, the stel-
lar radius would still be 0.01λ/d.

Figure 7 shows how coronagraphic performance
(useful throughput) decreases as the stellar radius
increases, and can be used to somewhat arbitrarily
divide coronagraphs in 3 groups:

• High sensitivity to stellar radius (AIC,
4QPM, PM, OVC2, ODC). These corona-
graphs cannot maintain high contrast even
with a 0.01 λ/d stellar radius. They would
be very difficult to use for ETP imaging.

• Moderate sensitivity to stellar radius (VNC
and BL4 with small IWA/large shear: VNC/BL4(1),
PSC, APLCs, OVCN with large value of N).
These coronagraphs may be used efficiently
on “small” diameter telescopes (for which
the stellar radius is about 0.01λ/d or less).

• Low sensitivity to stellar radius (PIAAC,
VNC and BL4 with large IWA/small shear,
BL8, CPA). These coronagraphs are suitable
for direct imaging and characterization of
ETPs, as they tolerate stellar radii of 0.1λ/d.

The robustness of VNC/BL4(1) compared to the
VNC/BL4(2) is entirely due to the larger IWA
chosen in this this study for the VNC/BL4(2). For
both the BL4 and VNC, there is a IWA vs. sensi-
tivity to stellar radius tradeoff.

For most coronagraphs, increasing the stellar
diameter first compromises contrast at small an-
gular separations. Even the VNC/BL4(2) and PI-
AAC, which are relatively insensitive to angular

size, lose throughput at small angular separations
in the 0.1λ/d radius case.

The CPA and BL8 stand out as being extremely
robust to stellar angular size: their throughput
curves are almost identical from 0 to 0.1 λ/d stellar
radius. The CPA owes its relative immunity to tip-
tilt errors to the field-invariance of its PSF. The
sensitivity of the BL8 to tip-tilt errors was studied
in detail by Shaklan & Green (2005), who also find
that the BL8 can tolerate relatively high levels of
focus, coma, and astigmatism.

Direct comparison between Figures 3 and 7
shows a very disappointing result: the the best
coronagraphs in the point source case (AIC, PM,
4QPM, OVC2) all perform very poorly when the
stellar angular size is considered. Increasing the
stellar size from 0 to 0.01λ/d has moved the small-
est angular separation at which 50% throughput
is reached from 0.5 λ/d (for the AIC) to slightly
more than 2λ/d (for the PIAA). Is this behav-
ior imposed by fundamental physics and therefore
unavoidable ? Or is there hope to find a low-IWA
coronagraph which is not so dramatically sensitive
to stellar angular size ?

4.2. Throughput limit imposed by stellar
angular size

In this section, we quantify how the angular ex-
tent of the source affects the coronagraph through-
put. We assume that the coronagraph is observ-
ing a disk of uniform surface brightness and an-
gular radius rs. Using the same framework as in
§3.3, the star is now modeled by a series of vec-
tors Ak = A(αk), where the αk are uniformly
distributed on the stellar disk (|αk| < rs) and
k = 0...Ns − 1. An orthonormal base can be built
from the vectors Ak with the following process:

1. The vector Mi (i = 0 initially) of this base
is chosen to be co-linear with the vector Ak

with the highest norm.

2. All vectors Ak are replaced by their projec-
tion on a hyperplane perpendicular to Mi.

3. i is incremented and we return to step 1 with
the new vectors Ak.

This algorithm insures that, in the orthonormal
base obtained, the coefficients of the vectors Ak

decrease very rapidly. We denote mi, i = 0...N−1
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the maximum absolute value of the coefficient i in
this new base across all Ak. The 2D representation
of the first 5 vectors Mi are shown in Figure 8. The
same modes can be obtained by linear expansion
of the pupil complex amplitude ei(xu+yv) for small
values of u and v (here, pupil plane coordinates
are (x,y) and point source angular coordinates on
the sky are (u,v)).

xyyx

yx1

2 2

mode M2

mode M3 mode M4

mode M0 mode M1

mode M5

Fig. 8.— Graphical representation of the first 5
modes of the orthonormal base Mi for a circular
unobstructed pupil. The vectors Mi are indepen-
dent of stellar size, and their coefficients are all
real numbers (no imaginary part).

As previously shown, a coronagraph which
needs to cancel the light across the stellar disk
can be represented by a vector C of norm 1. We
denote ci, i = 0...N −1 the coefficients of C in the
new base of modes Mi. To insure that the coron-
agraph cancels the light of the star by a factor ε,
the following constraint on each ci can be imposed
:

|ci| <
√

ε/mi. (6)

This constraint is not rigorously equivalent to stat-
ing that the integrated starlight transmitted by
the coronagraph is smaller than ε, but we have ver-
ified numerically that it yields a stellar through-
put which is in most cases within 20% of ε. This
can be explained by the very rapid decrease of mi

with i (especially for smaller stars) and the rapid
quadratic increase of stellar leaks if |ci| goes above√

ε/mi. For modest stellar sizes (below λ/d),
equation 6 constrains only the first few ci (the
others are constrained by |ci| < 1). We note that
adopting a zero stellar size will result in m0 = 1
and mi = 0 for i > 0. In this case, equation 6
only imposes a constraint for i = 0. To obtain the

maximum throughput as a function of angular dis-
tance, the vector A(αp) is decomposed in the new
base, and its first coefficients are multiplied by the
values of |ci| derived in equation 6. The results ob-
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Fig. 9.— Upper limit on the off-axis throughput
of a coronagraph for different stellar radii.

tained, shown in Figure 9 and also overplotted in
Figure 7, confirm the large effect of a small in-
crease in stellar size on the coronagraphic IWA.
In the point source case, the 50% throughput can
be reached at 0.5λ/d; For a 0.1λ/d-radius source,
the 50% throughput limit moves to almost 2λ/d.
This behavior is contrary to a “geometrical op-
tics” intuition, which would suggest that increas-
ing the stellar size by 0.1 λ/d moves IWA by 0.1
λ/d. In the linear algebra model of coronagraphy
presented in this work, this behavior is however
understandable: as the stellar diameter increases,
a higher number of modes needs to be removed
from the wavefront; each mode removed increases
the coronagraph’s “blind spot” by a ≈ (λ/d)2 area
in the focal plane.

A coronagraph which follows exactly the limit
shown in Figure 9 can be assembled from dis-
crete beam splitters and phase shifts as described
in §3.3.3. An example of such a design is shown
in Figure 10. A c0 = 0 coronagraph is often re-
ferred to as a 2nd order null coronagraph, while
c0 = c1 = c2 = 0 insures a 4th order null (and so
on...).
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Fig. 10.— Example of a beam splitter-based coronagraphs with c0 = c1 = c2 = 0 (perfect rejection of the
first 3 vectors Mi) designed for a square aperture. The telescope pupil (top left) is decomposed in a series
of individual subpupils (shown in the input vector on the right of the pupil) which undergo interferometric
combinations through beam splitters. The coronagraph outputs isolates the first 3 modes found in an
extended source, as shown in the bottom right: C (= M0), X (= M1) and Y (= M2). This coronagraph
produces a 4th order null and therefore provides some immunity to stellar angular size. The same technique
can be generalized to circular pupil and better sensitivity to stellar angular size (more vectors Mi isolated).

4.3. Coronagraphic imaging at small an-
gular separation (< λ/D)

In this section, our linear algebra-based model
is used to predict and explain how different coron-
agraph behave at small angular separation. These
results allow us to understand how coronagraphic
performance degrades as stellar angular diameter
increases, and allow in §4.4 to determine if wave-
front control techniques can mitigate this problem.

4.3.1. Second-order coronagraphs (IAC, PM,
4QPM)

The smallest-IWA coronagraphs considered in
this study (IAC, PM, 4QPM) all remove mode M0

(see Figure 8) from the incoming wavefront but
“transmit” (at least partially) modes M1 and M2.
At very small angular separations, the “transmit-
ted” wavefront is therefore dominated by a com-
bination of modes M1 and M2. The coefficients
of this combination are proportional to the off
axis distance, resulting in a coronagraphic resid-
ual light intensity proportional to the square of
the source’s angular separation (2nd order coron-
agraphs). It is therefore expected that for these
coronagraphs, the complex amplitude in the fi-
nal image is also proportional to the source co-
ordinates: the complex amplitude for a source
at position (u, v) is the opposite of the com-
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graphs as a function of angular separation. At
small angular separation, the PSF of AIC, PM
and 4QPM are centro-symmetric, making it im-
possible to determine on which side of the optical
axis is the source. The OVC6 PSFs at 0.01λ/D
and 0.1λ/D are dominated by numerical roundoff
errors. Note that the brightness scale is not con-
stant, as images on the left are much fainter than
images on the right.

plex amplitude for a source at position (−u,−v).
At small angular separations, our theoreti-
cal analysis therefore predicts that the im-
ages (square modulus of the complex am-
plitudes) of two point sources on opposite
sides of the optical axis are identical, and
that, as the source moves away from the op-
tical axis, its image is simply multiplied by
a constant, but does not change structure.
Both these predictions are confirmed by numerical
simulations, as shown in Figure 11 (top 3 rows).

4.3.2. Other small-IWA coronagraphs (ICC6,
OVC6, PIAAC)

Just as in the case of second-order corona-
graphs, the linear algebra-based theory outlined
in the previous sections can predict/explain the
behavior of other coronagraphs at small angular
separation.

The Interferometric Combination Coronagraph
(ICC6) which will be described in §5.3 perfectly
removes the first 6 modes shown in Figure 8, but
leaves other modes untouched. The “transmitted”
wavefront of this theoretical coronagraph at small
angular separation is therefore dominated by the
−i(xu + yv)3/6 term in the polynomial expansion
of ei(xu+yv), corresponding to modes x3, y3, xy2

and x2y (not shown in Figure 8). We can therefore
predict that along any direction, its PSF is a fixed
image multiplied by the 6th power of source angu-
lar separation, and that PSFs for 2 point sources
on opposite sides of the optical axis will be iden-
tical. A similar behavior is seen in Figure 11 for
the OVC6, which also removes the first 6 modes
shown in Figure 8. Since this coronagraph also
attenuates further modes, the PSF structures and
throughput are however different from the ICC6,
which is designed to perfectly cancel the first 6
modes and fully transmit the others.

Finally, the PIAAC is a more complex (but also
more representative of “real world” coronagraphs)
case: it strongly attenuates, but does not fully re-
move, modes 1 to 6 of Figure 8. At very small
angular separation (up to ≈ 10−3λ/D), mode M0
dominates the coronagraphic residual: the PSF
is independent of source position. In the 10−3 to
10−2λ/D range, a small residual in modes M1 and
M2 dominates and the coronagraph behaves as a
second order coronagraph (see §4.3.1 above). At
a 0.1λ/D separation and beyond, no single mode
is dominating, and several partially transmitted
modes interfere and/or are together to form the
image: the PSF clearly shows on which side of the
optical axis the source is, a behavior that cannot
be achieved if the image is dominated by a single
mode since individual modes are either symmet-
ric or antisymmetric in complex amplitude (and
therefore always symmetric in intensity).
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4.4. Speckle nulling techniques, stellar
size and pointing errors

Active elements (Deformable Mirrors) can be
used to create a coherent “anti speckle halo” which
destructively interferes with the unwanted residual
focal plane speckles. These speckle nulling tech-
niques, first proposed by Malbet et al. (1995), were
more recently studied by several authors (Codona
& Angel 2004; Labeyrie 2004; Guyon 2005; Bordé
& Traub 2006) and successfully tested in labora-
tory (Trauger et al. 2003).

4.4.1. Can speckle nulling techniques mitigate
coronagraphic leaks produced by stellar an-
gular size ?

The star can be modeled as a set of point
sources uniformly distributed on the stellar disk
(these sources are not mutually coherent). We first
assume that a second order coronagraph is used,
and we consider only one of these point sources
(not at the center of the disk) which contributes to
the coronagraphic leakage by adding an image on
the focal plane. This particular image is fully co-
herent and can therefore be canceled by a speckle
nulling technique. The shape/state of the active
optical element(s) (DM for example) in the speckle
control device will be such that the phase and am-
plitude of the “anti speckle halo” is the opposite
(same amplitude, π phase offset) of the leakage:
destructive interference between the 2 will leave no
light in the focal plane. We now decide to “freeze”
the state of the speckle nulling device and move
the point source on the other side of the optical
axis. This multiplies the complex amplitude of
the coronagraphic leakage by −1 (§4.3.1) but does
not change the “anti speckle halo” (which is in-
dependent of source position within the small an-
gular displacement considered). The leakage and
“anti speckle halo” will therefore add rather than
subtract because of a phase mismatch, and the
leakage intensity will be 4 times higher than with-
out speckle nulling. To every point on the stellar
disk corresponds an equally bright point on the
other side of the optical axis: speckle nulling can-
not reduce coronagraphic leaks in a second-order
coronagraph.

The same “phase mismatch” argument applies
to 6th order coronagraph such as ICC6. Inde-
pendently of this “phase mismatch” effect (which

would not apply to a 4th order coronagraph dom-
inated by modes M3 to M5), coronagraphic leaks
increase as the point on the stellar disk moves
away from the optical axis, and there is therefore a
similar “amplitude mismatch” effect when stellar
points at different radii are considered.

The stellar angular size problem described in
§4.1 truly is a fundamental limit.

4.4.2. Pointing errors and low-order aberrations

Pointing errors (or any higher order optics aber-
rations), on the other hand, produce a coherent
leak which can be suppressed by wavefront control
techniques. Low order aberrations can be mea-
sured from the coronagraphic leaks they produce.
A more optimal strategy is to “catch” aberrations
before they start to increase coronagraphic leaks
by utilizing “for free” the large amount light that
is blocked by the coronagraph. This can usually
be done by re-imaging of the light reflected by the
focal plane occulter (or, for phase mask corona-
graphs, the light outside the geometric pupil).

We note that speckle sensing and nulling usu-
ally require a small spectral bandwidth, as the
speckle coherence is low in white light: the ob-
serving spectral band may have to be split with
dichroics in small “bins” prior to applying speckle
nulling.

5. Zodiacal and exozodiacal light

5.1. Mixing of incoherent background
light with the planet’s light: the
diffractive efficiency factor

The “useful throughput” introduced in §3.1 ac-
curately quantifies the coronagraphic performance
in a system composed solely of a star and a single
planet. A planetary system is however observed
against incoherent zodiacal and exozodiacal light
backgrounds. For simplicity, we assume here that
both background components are constant across
the field (this is an approximation for the exo-
zodiacal light) and that they can be numerically
subtracted to the photon noise level.

We consider a planet+background system (no
central star) in which β is the ratio between to-
tal planet light and total background light within
the planet image (which we define here, for conve-
nience, as the smallest focal plane area containing
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half of the planet’s PSF light). We denote β0 this
value for a non-coronagraphic imaging telescope
(Airy pattern). Coronagraphs unfortunately tend
to decrease β (β < β0) by a factor which we denote
the diffractive efficiency factor (DEF):

• Pupil amplitude apodization and/or clip-
ping in the Lyot plane increases the angular
size of the planet image, therefore mixing
more background light with the planet light.

• The AIC delivers double images of the
planet, therefore dividing β by two.

• Coronagraphs delivering PSFs in which a
significant fraction of the light is outside the
main diffraction core decrease β.

Three factors determine the DEF: the width w
of the PSF core (more exactly, the square root
of the “useful” PSF area), the fraction f of the
PSF energy in the diffraction core, and the to-
tal throughput T . The collectible planet energy
is proportional to fT while the background flux
collected in the same focal plane area is propor-
tional to w2T : the DEF is therefore proportional
to f/w2.

The diffractive efficiency factors of most of the
coronagraphs in Table 1 are listed in Table 2, along
with other key characteristics. The DEF is es-
pecially low on the CPA and BL8 due to their
poor angular resolution. As discussed in §2.2.1,
a CPA with a binary mask (shaped pupil) could
“amplify” background levels by another factor 2:
the combined effect is then equivalent to dividing
the planet/background ratio by ≈ 7.

5.2. Background level

The zodiacal light background level is about
mV = 22.5 arcsec−2 (can be less in some di-
rections), and an Earth-like planet (6400km ra-
dius, 0.33 visible albedo, orbiting a Sun-like star
at 1 AU), at maximum elongation, is mV =
24.1 + 5 log(d) where d is the system distance
in pc. If we assume that the zodiacal, exozo-
diacal and planet spectra are identical, the dis-
tance at which, within the planet’s image (λ/d
wide), zodiacal+exozodiacal background matches
the planet’s flux, is, for a favorable “face-on” ge-

ometry:

dc(pc) ≈ 2.3 × DEF
√

(1 + 2z)

D(m)

λ(µm)
(7)

where z is the exozodiacal cloud dust content,
normalized to our own system, and DEF is the
diffractive efficiency factor described in §5.1. For
example, with z = 3, DEF = 0.5, λ = 0.55µm
and D = 4m, dc = 4.5pc: for all but a few targets,
photon noise from the background level will be the
main source of noise, and will drive the exposure
time required for successful detection of ETPs. At
longer wavelength, the PSF size increases, there-
fore gathering more zodi+exozodi background and
reducing dc.

5.3. Can an “ideal” coronagraph be built
with DEF = 1 ?

In §4.2, we have demonstrated that a corona-
graph which delivers theoretically ideal through-
put on a partially resolved star can be designed
using beam splitters and phase shifts. The ex-
ample shown in Figure 10 achieves this goal by
confining starlight in a few interferometric out-
puts (as the required contrast and/or stellar diam-
eter increases, the number of such outputs grows).
However, no care was given to the distribution of
planet light across the remaining outputs, and it is
likely that background and planet light are highly
mixed, resulting in high diffractive efficiency factor
and poor imaging capabilities. We show here that
a coronagraph can be designed to simultaneously
deliver optimal throughput for a partially resolved
star (see §4.2), full angular resolution imaging and
DEF = 1.

In a classical non-coronagraphic imaging tele-
scope, the system matrix U shown in Figure 4 is a
Fourier transform, offering full angular resolution
imaging and DEF = 1 but poor coronagraphic
performance: we denote Ui this “imaging” ma-
trix. On the other hand, a “coronagraphic” matrix
Uc optimized for coronagraphic performance, such
as the one shown in Figure 10, efficiently isolates
starlight but suffers from poor imaging capability
and high diffractive efficiency factor.

The same iterative method used to produce the
“vectors” C, X and Y in Figure 10 can be used to
produce any predefined unitary matrix. Unitary
matrices can also be cascaded: the input of a ma-
trix, instead of being the telescope pupil, can be
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Table 2

Coronagraph Characteristics for 1010 contrast

Coronagraph Throughput Angular diffractive IWAc IWA(5%) with stellar radiusd

name average peak resolutiona eff. fact.b 0 λ/d 0.001λ/d 0.01λ/d 0.1λ/d

AIC 0.50 0.57 1.0 0.5 0.38 0.15 6.14 > 8.0 > 8.0
VNC/BL4(1) 0.09 0.36 1.65e 0.37e 1.49 1.27 1.27 1.43 > 8.0
PSC 0.18 0.73 1.0f 0.5f 1.13 0.79 0.79 3.24 > 8.0
CPA 0.08 0.08 1.81 0.31g 4.20 4.42 4.42 4.42 4.47
PPA 0.08h 0.33h 1.35 0.18 3.91 3.29 3.29 3.30 4.02
APLC 0.20 0.20 1.22 0.67 2.41 2.01 2.17 4.02 > 8.0
APLC2 0.27 0.27 1.11 0.81 1.64 1.26 1.78 4.71 > 8.0
VNC/BL4(2) 0.35 0.70 1.19 0.71 3.02 2.17 2.20 2.21 3.77
BL8 0.26 0.28 1.86 0.29 2.96 3.04 3.04 3.04 3.05
PM 0.71 0.71 1.0 1.0 0.69 0.23 2.94 3.59 > 8.0
4QPM 1.0 1.0 1.0 1.0 0.84 0.28 2.39 > 8.0 > 8.0
OVC2 1.0 1.0 1.0 1.0 0.84 0.21 2.21 > 8.0 > 8.0
OVC4 1.0 1.0 1.0 1.0 1.62 0.62 0.66 1.74 > 8.0
OVC6 1.0 1.0 1.0 1.0 2.45 1.02 1.02 1.19 2.87
OVC8 1.0 1.0 1.0 1.0 3.26 1.41 1.42 1.42 3.01
ODC -i 0.70 1.18j 0.72j 0.97 0.50 4.59 > 8.0 > 8.0
PIAA 1.0 1.0 1.0 1.0 1.88 1.28 1.38 1.66 2.0
ICC6 1.0 1.0 1.0 1.0 1.32 0.76 0.76 0.76 1.76

aSquare root of the smallest focal plane area containing half of the planet’s light. Normalized to 1.0 for the
Airy pattern of an non-coronagraphic telescope. In the case of the AIC, the angular resolution is measured on
one of the 2 images.

bDiffractive efficiency factor measured at 20λ/d unless otherwise specified.

cAngular separation at which the planet’s useful throughput first reaches half of the peak throughput. This is
the standard definition of inner working angle (IWA): it assumes that the planet is favorably placed (no radial
average) and that the star is point-like.

dAngular separation at which the planet’s radially averaged useful throughput first reaches 5% for the stellar
radius shown.

eMeasured at 2.36λ/d.

fMeasured at 1.77λ/d.

gHigher if the apodization is performed by a binary mask

hOnly the main PSF diffraction peak is considered in the throughput

iThe outer part of the field is not transmitted in the ODC

jMeasured at 2λ/d.
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the output of another matrix. For example, it is
possible to cascade a “pupil to focal plane” matrix
Ui with a “focal plane to pupil” U−1

i matrix, with
no net result (the product of the two matrices is
the unity matrix).
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Fig. 12.— Design of an “ideal” coronagraph by
cascading unitary matrices. In the first step, mul-
tiplication of the complex amplitude in the pupil
plane by the coronagraphic matrix Uc concentrates
starlight in a few outputs. This operation can
be inverted by multiplication by U−1

c , therefore
restoring the telescope pupil. Multiplication by Ui

produces a clean “image” of the planet. At each
step, distribution of stellar (vector on the left),
planet (center vector) and background (right vec-
tor) light is shown in greyscale: from white for
no light to black for maximum light. The “ideal”
coronagraph is obtained by simply masking the
few outputs containing starlight in the “corona-
graphic outputs” intermediate step.

One such cascade is shown in Figure 12: it is
designed to produce a “coronagraphic intermedi-
ate step” where all starlight is concentrated in a
few outputs and a final “focal plane” step with
good imaging capability and DEF = 1. The over-
all system matrix U = Uc × U−1

c × Ui = Ui is
equivalent to a classical imaging telescope, as de-
tection (conversion from amplitude to intensity) is
performed after the last step of this chain. Stellar
light can be easily masked in the “coronagraphic
intermediate step”, with minimal impact on the
planet light (unless the planet is very close to the
star) and background light (which is always spread

across all outputs). The sequence of optical steps
to perform is therefore:

1. Select the transformation Uc which best iso-
lates stellar light from planetary light

2. Block starlight in the few outputs where it
has been concentrated.

3. Undo transformation 1 to recover the origi-
nal telescope pupil (Uc

−1)

4. Select the transformation which concen-
trates the planet light in a single bright
diffraction peak (imaging Ui)

In an optimized implementation of this scheme,
where the number of optical elements is to be min-
imized, there is no need to separate steps 2 and 3,
as the intermediate product (the original telescope
pupil) is not used.

An identical scheme is used in the PIAAC
design, although this coronagraph falls short of
the theoretically ideal performance derived in this
work. The PIAAC first concentrates stellar light
in a very tight diffraction core (step 1), which
is then blocked by a mask (step 2). The pupil
remapping used to perform step 1 unfortunately
“scrambles” the planet image beyond ≈ 10λ/d. A
second remapping unit is therefore then used to
undo the first remapping (step 3). Finally, an im-
age is formed (step 4).

Since the only currently known solution to
build the ideal coronagraph requires many beam
splitters, this type of coronagraph is referred to
as the Interferometric Combination Coronagraph
(ICCN , where N is the number of modes removed
in the coronagraphic intermediate step) in this
work.

We have used the above method to simulate an
ICC6, designed to remove the 6 modes shown in
Figure 8. The resulting coronagraphic through-
put is of the 8th order (just as for the BL8 coro-
nagraph), with an IWA of 1.32 λ/d. This par-
ticular design is well suited for direct imaging of
ETPs and accurately represents the absolute limit
of what coronagraphy can achieve for this purpose.
The useful throughput vs. angular separation of
the ICC6 is virtually identical to the “theoreti-
cal limit” shown in the upper panel (stellar radius
= 0.01λ/d) of Figure 7.
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The performance of this “ideal” coronagraph
(as well as the performance of a few other corona-
graphs) is modeled in more detail in the following
section. Table 2 concludes the previous sections
by listing the main characteristics of the corona-
graphs studied in this paper.

6. Monte Carlo simulations

In the previous sections, coronagraph per-
formance has been quantified by the useful
throughput and the diffractive efficiency fac-
tor. Together, these two quantities could be used
to evaluate, for a given target (star+planet+background),
the signal-to-noise (SNR) as a function of expo-
sure time. This simple model can unfortunately
be quite inaccurate:

• Exozodiacal light is not a smooth back-
ground (it is significantly brighter closer to
the star and in a high inclination system, the
exozodi disk can be a narrow linear feature):
its effect cannot be accurately modeled by
the diffractive efficiency factor. Planets are
brighter when in nearly full phase, but are
then closer to the star and therefore over
brighter portions of the exozodi cloud.

• In the presence of background light (zodia-
cal + exozodiacal light), faint parts of the
PSFs that contribute to the useful through-
put can have a negligible contribution to the
detection SNR: the spatial distribution of
the planet light affects the SNR.

While the useful throughput and the DEF pro-
vided us with valuable insight into coronagraph
performances, accurate estimation of the detection
sensitivity requires explicit computation of images
delivered by the coronagraph.

In this section, the performance of six promis-
ing coronagraphs identified in the previous sec-
tions (CPA, PIAAC, BL8, OVC6, ICC6 and
VNC/BL4(2)) is quantified for the direct detection
of Earth-type planets. Details of this simulation
are given in §6.1. As the goal of this study is to
show what can be potentially achieved with var-
ious coronagraphs, very optimistic assumptions
have consistently been made. They are listed in
Table 3 and further detailed in the next section.

6.1. Description of the Simulation

6.1.1. Initial sample of targets

A list of potential target was first created by
selecting stars within 100pc in the Hipparcos cat-
alog. The effective temperature of each star was
computed from the B-V color index, using the
color index vs. temperature law of main sequence
stars. Stars with effective temperature between
4060 K and 7200 K (types F, G and K) were then
selected, and those listed as subarcsecond separa-
tion doubles removed. Giants were excluded from
our sample using the stellar bolometric luminos-
ity/effective temperature criteria outlined in Fig-
ure 13. This sample now contains 16921 stars.
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Fig. 13.— Bolometric luminosity (1 = Sun) and
effective temperature of stars within 100pc. The
thick black line shows the criteria used in this work
to exclude giants: all stars above this line are re-
jected from our sample of potential targets.

Each star is assumed to have an ETP. In this sec-
tion, ETP (extrasolar terrestrial planet) is used
to mean a standard Earth analog: Lambert phase
function, radius = 6400km, albedo = 0.33, cir-
cular orbit at 1 AU times the square root of the
star’s bolometric luminosity (computed assuming
the star is a perfect blackbody radiator). The in-
clination of the orbit, assumed to be coplanar with
the exozodiacal disk, is set to π/3 for all systems:
this is the median value expected for a random
system orientation.

A final selection criteria is to reject systems
for which the planet, at maximum elongation, is
within 1 λ/d of the star: none of the coronagraphs
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Table 3

Simulation parameters.

value unit notes

Optics throughput 0.25 excludes losses due to coronagraph design
Wavefront quality perfect no time-variable wavefront errors
Detector perfect no readout noise or dark current
Imaging wavelength 0.5 – 0.6 µm

Zodiacal background 23.28 – 22.24 mV /arcsec2 function of target ecliptic latitude

1 zodi exozodiacal cloud brightness 22.53 mV /arcsec2 at the habitable zone, for a face-on system

Exozodiacal cloud inner edge 0.02
√

L AU L = star bolometric luminosity

Exozodiacal cloud outer edge 5.0
√

L AU L = star bolometric luminosity
Exozodiacal cloud thickness 0.0 AU thickness unresolved by telescope
exozodi optical depth ∝ r−0.34

Planet radius 6400 km
Planet albedo 0.33

semi-major axis
√

L AU L = star bolometric luminosity
Eccentricity 0
Orbit inclination i = π/3 rad statistical median for random orientation

studied in this work can efficiently detect planets
within this angular separation. For an 8m tele-
scope observing in the 0.5–0.6 µm band, this final
sample contains 3429 stars at an average distance
of 51 pc.

6.1.2. Zodiacal light

Zodiacal light is modeled as a uniform back-
ground across the telescope’s field of view. For
each target, it is assumed that the observation
occurs at the time of the year when the zodi-
acal background is minimal, which is about 40
days before or after opposition for most targets.
The resulting zodiacal background, derived from
Levasseur-Regourd & Dumont (1980), is a func-
tion of ecliptic latitude, and ranges from mV =
23.28 (ecliptic poles) to mV = 22.24 (ecliptic equa-
tor).

The uniform zodiacal background is sampled by
a square grid of points (0.2 λ/d sampling in 2 or-
thogonal directions - about 30000 PSFs in the 20
λ/d radius field of view). The PSF is computed
for each point, and the final image delivered by
the telescope/coronagraph is obtained by adding
the 30000 coronagraphic PSFs together.

6.1.3. Exozodiacal light

The exozodiacal cloud is assumed to be a thin
disk with dust optical depth, as seen from above
the 2D disk, varying as r−0.34 (surface brightness
∝ r−2.34). This power law index is derived from
modeling of our own zodiacal cloud in the Earth
neighborhood (Kelsall et al. 1998). For a 1 zodi
exozodiacal disk, the dust optical depth at the lo-
cation of the planet is chosen to be identical to
the vertical optical depth of our zodiacal cloud at
1 AU. In this model, the 0.55µm surface brightness
of a face-on exozodi cloud at the location of the
planet is thus a function of the ratio between the
star bolometric luminosity (which defines where
the planet is) and the star luminosity at 0.55µm
(which defines how much the star illuminates the
dust). The inner edge of the exozodi cloud is set
at 0.02 AU times the square root of the star’s
bolometric luminosity (dust sublimation), and its
outer edge is 5 times the planet-star distance.

The image of the exozodiacal cloud delivered by
the telescope/coronagraph is computed with the
same 0.2 λ/d sampling as used for the zodiacal
background image.
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6.1.4. Detection metrics: Signal-to-Noise ratio
(SNR) and detection probability

It is assumed that the stellar diameter, exozodi
cloud, zodiacal background and telescope/coronagraph
characteristics are perfectly known. The planet
detection SNR is therefore driven by photon noise
and is proportional to the square root of the ex-
posure time. The photon noise (from the planet,
star, zodiacal and exozodiacal images) and the
signal (the planet image) are evaluated for each
pixel of the image. The planet detection SNR is
obtained by the quadratic sum of the pixel SNRs:
this optimal weighting scheme favors pixels with
large planet flux and low zodi+exozodi+star flux.

We assume here that at the time of the obser-
vation, the position of the planet along its orbit is
unknown. For a given exposure time, the planet
detection SNR is computed at each point along the
planet orbit. A limit on the SNR is adopted (SNR
> 7) for successful detection, and the number of
points along the planet orbit for which this limit is
reached yields the planet detection probabil-
ity. This probability, also referred to as complete-
ness (Brown 2004, 2005), is therefore a function of
exposure time.

A related metric used in this study, derived
from the planet detection probability, is the single-
exposure integration time required to reach a given
planet detection probability.

6.2. Example: HIP 56997

Figure 14 shows some example frames obtained
by the simulation code for the 6 coronagraphs
selected. These images nicely illustrate corona-
graphic characteristics quantified in the previous
section:

• Useful throughput at large separa-
tion. The CPA, BL8, and to a lesser extent
VNC/BL4(2) suffer from low coronagraphic
throughput. As a result, the planet’s image,
even if well outside the coronagraph mask’s
influence, appears noisy (few photons de-
tected). The PIAAC, OVC6 and ICC6, on
the other hand, enjoy nearly 100% through-
put: the planet image is brighter and less
noisy.

• Angular resolution. The CPA, BL8,
and to a lesser extent VNC/BL4(2) have

poorer angular resolution: the planet im-
age is larger and more zodi/exozodi light is
mixed with it.

• Ability to work at small angular sepa-
ration. None of the coronagraph tested can
detect the planet on a 2m telescope with the
exposure time, wavelength, and throughput
used in Figure 14. Detection appears feasi-
ble on a 4m telescope with the VNC/BL4(2),
PIAAC, OVC6 and ICC6, but requires a 6m
telescope with the BL8. Finally, an 8m tele-
scope is needed for detection with a CPA.

• Sensitivity to stellar angular size. The
CPA and BL8 are extremely robust to stel-
lar angular size: starlight leaks are virtu-
ally nonexistent even on the 12m telescope.
With the VNC/BL4(2), PIAAC, OVC6 and
ICC6, starlight is visible on the 12m tele-
scope (equivalent to a 6m telescope observ-
ing the same system at 5pc), although it is
still fainter that the exozodiacal contribu-
tion.

Images similar to the ones shown in Figure
14 can be generated for each possible position of
the planet along its orbit. These images have
been used to compute for HIP 56997 the expo-
sure time required to reach 20% and 50% detection
(SNR=7) probability. Results, in Table 4, show
very large discrepancies between coronagraph de-
signs. For example, on a 6m telescope, the PI-
AAC requires 44 times less exposure time to reach
a 50% detection probability than the CPA. For
this target, the performance of the PIAAC, OVC6
and ICC6 coronagraph are similar, while the other
3 coronagraph are significantly inferior (especially
the CPA). For the VNC/BL4(2), it was assumed
that the preferential direction of the coronagraph
was optimally aligned with the system orientation.

6.3. 4m and 8m diameter telescopes ob-
serving in the 0.5–0.6 micron band

In the previous section, a single target was
adopted while the telescope size was variable.
Here, we adopt fixed telescope sizes and evalu-
ate the telescope/coronagraph combination per-
formance on a sample of nearby stars, defined in
6.1.1. Results are shown in Figure 15 for 4m and
8m telescopes.
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OVC6PIAACBL8CPA BL4

8m
6m

4m
2m

12
m

ICC6

Fig. 14.— Simulated 4 hours exposures of HIP 56997 and an hypothetical Earth-type planet at maximum
elongation for telescope sizes ranging from 2m to 12m. HIP 56997 is a G8 type main sequence star at 9.54 pc.
Each image assumes a perfect detector, minimum zodiacal background (mV = 22.95 zodiacal background
for this 29 deg ecliptic latitude source), a 1 zodi exozodi cloud, a 25% telescope+camera throughput, and a
0.1 µm bandpass centered at 0.55 µm. The system inclination for this particular simulation was arbitrarily
set at i ≈ 59 deg. Each image is 20 x 20 λ/d, and the planet-star separation is 80 mas.
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CPA                     18       68    108
BL8                      30     115    189

OVC6                 173    695   1020
PIAAC               197    683     971
ICC6                   291  1285   2094

8m telescope, exozodi = 1 zodi

CPA                  1        3        5
BL8                   1        4      12

OVC6              10      37     57
PIAAC            12      39     62
ICC6                16      62   108

BL8                  2     12     16
CPA                 1       5      10

OVC6             18     63     94
PIAAC           19     65     98

BL8                   3      16      23 
CPA                  1        8      12

OVC6              26     87     148

CPA                   7       30       49
BL8                  12       45       70

OVC6               64     261     426
PIAAC             78     290     468
ICC6                89     475      801

BL8                  20      74     123
CPA                 14       52      74

OVC6            114     463    742
PIAAC          130     506    728
ICC6              182    866   1397ICC6              27    114   182

PIAAC            27     90     139
ICC6                42   177     252

VNC/BL4(2)

VNC/BL4(2)
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VNC/BL4(2)

VNC/BL4(2)   12      34      60

VNC/BL4(2)    7     28     38

VNC/BL4(2)     4      14      25

VNC/BL4(2)        52     255    440

VNC/BL4(2)    29     163    282

VNC/BL4(2)    17       93      151

Fig. 15.— Total cumulative exposure times required to reach a 50% planet detection (SNR=7) probability
for a single observation as a function of number of targets. For all simulations, a 25% throughput in the
0.5µm–0.6µm band is adopted, and targets are ordered with increasing exposure time. Each curve terminates
when the required exposure time per target reaches 1 day. Results are shown for a 4m telescope (left) and
an 8m telescope (right) with exozodi levels ranging from 1 zodi (top) to 10 zodi (bottom). The number of
accessible targets for which the required exposure times are less than 1 hour, 10 hour and 1 day are listed for
each case in the Grey boxes. In the 8m telescope plots, the horizontal line corresponds to a 2 months “shutter
open” cumulative exposure time, and may be considered as a practical limit on the number of targets that
can be visited.
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Table 4

Theoretical exposure times required to reach 20% and 50% detection (SNR=7)
probability on HIP 56997 in the 0.5–0.6 µm band.

Tel. Diam. CPA VNC/BL4(2) BL8 PIAAC OVC6 ICC6

20% detection probability
2m · · · a · · · · · · · · · · · · 12.4 hour
4m · · · 2.1 hour 11.4 hour 34 min 48 min 14.3 min
6m 6.9 hour 14 min 44.8 min 5.7 min 8.6 min 3.78 min
8m 63 min 4.8 min 17 min 2.1 min 3.1 min 110 sec
12m 12 min 2.7 min 4.3 min 45 sec 56 sec 42 sec

50% detection probability
2m · · · · · · · · · · · · · · · · · ·
4m · · · 12.7 hour · · · 2.3 hour 2.2 hour 44.1 min
6m · · · 59 min 5.0 hour 14 min 19.8 min 12.23 min
8m 4.3 hour 18 min 1.8 hour 5.8 min 7.6 min 5.4 min
12m 31 min 55 min 19 min 2.0 min 2.4 min 113 sec

aExposure times above 1 day are not shown in this Table, as they are practically unrealistic.

In a purely background-limited detection, ex-
posure time is expected to scale linearly with the
background level: approximately 7 times longer
for the 10 zodi exozodi case than for the 1 zodi exo-
zodi case (assuming the local zodi background cor-
responds to half a zodi of exozodiacal light). The
fact that this is generally true in Figure 15 con-
firms the importance of the DEF in coronagraph
designs. For coronagraphs with low DEFs, such as
PIAAC, OVC6 and ICC6, increasing the exozodi
however results in moderate increase of exposure
time for nearby targets (non background-limited
detections). This effect is most clearly visible in
the 8m telescope case for the easiest targets.

Figure 15 compares how many targets fall be-
low the 1hr, 10hr and 1 day required exposure time
levels with different exozodi contents. With the
4m telescope, the CPA and BL8 cannot access the
“habitable zone” of targets beyond ≈ 5pc, result-
ing in a very small number of potential targets (8
and 16 targets respectively for CPA and BL8 if
“potential target” is defined as one that requires
less than 10hr exposure time to reach the 50% de-
tection probability). The VNC/BL4(2), thanks
to its higher throughput, can access 34 targets.

With this telescope diameter (4m), the stellar an-
gular size is sufficiently small to allow improved
performance over CPA and BL8, which are more
robust to stellar angular size. In increasing or-
der of performance, the OVC6, PIAAC and ICC6
offer from 87 to 177 targets in the 1-zodi case.
It is interesting to note that the performance of
the OVC6 and PIAAC is very similar, while the
“ideal” ICC6 offers almost twice as many targets
as the PIAAC. This is mostly due to the benefit of
smaller IWA in the ICC6 over the PIAAC: 1.32λ/d
vs. 1.88λ/d, which increases the IWA-accessible
volume by 2.9. The planet intrinsic brightness and
the background level prevent access to distant sys-
tems, and there is therefore little gain in reducing
the IWA below 1.88λ/d.

With any of the 3 “top” coronagraph designs
simulated in this work (PIAAC, OVC6 and ICC6),
a 4m telescope could, with a 10hr per observation
limit and a 1-zodi assumption on the exozodi, per-
form a ≈ 100 target survey for ETPs. The total
exposure time to complete this survey, assuming
6 observations of 10hr for each target, would be
well under a year, and therefore sounds realisti-
cally achievable. Under the same assumptions,
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strong exozodi (10 zodi) would cut in half the sam-
ple size.

Figure 15 shows that doubling the telescope di-
ameter (from 4m to 8m) multiplies the number of
accessible targets by about 8 for all exozodi con-
tent, coronagraph type and exposure time limit
combinations tested. The relative efficiencies of
the 6 coronagraphs tested stay the same, with, in
order of decreasing performance, the ICC6, PI-
AAC and OVC6 able to access several hundred
targets in the 1-zodi case (with a 1hr exposure
time limit criteria), the VNC/BL4(2) about 50
targets and the BL8 and CPA a few tens of targets.

In this study, we have used an Earth-analog
as a prototype for Earth-like planets. The broad
concept of candidate Earth-like (potentially hab-
itable) planets likely extends to include planet di-
ameters to several times smaller and larger than
Earth. Orienting a survey to optimize detection
for a different planet radius would of course change
the observation times for each system and the
number of systems which could be surveyed. Sim-
ilarly, an observing program can be optimized for
any target list and planet description to maximize
the productivity with respect to total detections
or other criterion.

7. Conclusion

We have quantified the performance limit im-
posed by fundamental physics on the direct imag-
ing of ETPs. A solution to build an “optimal”
coronagraph reaching this limit was proposed,
but may be technologically difficult to implement.
Fortunately, we have also demonstrated that two
existing coronagraph designs (PIAAC and OVC6)
yield performances reasonably close (within a fac-
tor 2 in number of accessible targets) to this fun-
damental limit. These recently proposed designs
could image ETPs around up to about 100 stars
with a 4m telescope, or several hundred stars with
an 8m telescope.

For the coronagraphs to perform as detailed
in this study, two serious technological challenges
must however be solved:

• Wavefront control at the sub-Å level.
Thanks to the large number of stellar pho-
tons available, recent detector developments,
and the expectation that a space telescope
can be designed to offer a relatively stable

wavefront (with little rapidly varying aber-
rations, as opposed to atmospheric turbu-
lence for ground-based telescopes), it may
be reasonable to hope for this level of cor-
rection. Several authors have recently ex-
plored promising wavefront control schemes
free of aliasing and non-common path aber-
rations (Codona & Angel 2004; Labeyrie
2004; Guyon 2005; Bordé & Traub 2006),
and contrast levels obtained in laboratory
(Trauger et al. 2003) are approaching the de-
sired performance.

• Chromatic effects can seriously limit the
coronagraph’s usable spectral band. A large
number of solutions have been proposed to
“achromatize” coronagraphs, many of them
specific to a single coronagraph design (Abe
et al. 2001; Soummer et al. 2003a; Aime
2005a; Mawet et al. 2005; Pluzhnik et al.
2006; Swartzlander 2006). In addition to
coronagraph-induced chromatic effects, the
beam delivered by the telescope is expected
to be chromatic in amplitude and optical
pathlength differences (non-ideal coatings,
chromatic diffraction propagation between
optics). In general, chromatic effects can be
mitigated by reducing chromaticity in indi-
vidual components (beam splitters, phase-
shifters, apodization masks) or/and by split-
ting the spectral band into several narrower
bands with dichroics.

More fundamentally, the assumption that de-
tection is photon noise limited seems highly op-
timistic: ETPs are embedded in an exozodiacal
light unlikely to be perfectly smooth and symmet-
rical. Since good angular resolution may help to
distinguish between a planet and exozodiacal light
features (such as arcs or rings), it is important to
avoid using coronagraphs that clip or strongly at-
tenuate the edge of the telescope pupil if at all
possible.

The results obtained in this work should there-
fore be cautiously considered as upper limits on
what may be achieved with a particular corona-
graph/space telescope design for the specific goal
of imaging ETPs around nearby stars. We also
note that several low throughput/large IWA coro-
nagraphs studied in this paper can be more fa-
vorably designed for ground-based applications,
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where contrast requirements are relaxed by about
4 orders of magnitude.

The linear algebra approach to coronagraphy
presented in this work successfully explains key
characteristics and fundamental limits of coron-
agraphy. While we have focused our study on
the fundamental limitations of coronagraphy (due
to stellar angular size and background contamina-
tion), this model can be extended to evaluate the
sensitivity of coronagraphs to wavefront aberra-
tions other than tip-tilt. The same model can also
be used to derive fundamental limits and guide
the design of coronagraphs for more “exotic” pupil
shapes, from segmented pupils telescopes to short
or long baseline interferometric arrays.
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