Nulling Interferometry

Basic Approach
Motivation
Implementation

An Exo-Earth Mission using Nulling



Nulling interferometry

Combining high-angular resolution and high-contrast imaging

e First proposed by Bracewell (1978) to directly detect “non-Solar” planets;

e Subtracting starlight by destructive interference;
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Astronomical Interferometry
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Pupil-plane interferometry is used in
long-baseline interferometry.
Bracewell (1978) first suggested using
this technique to null a stellar point
source for detection of planets.

interferometric
focalplane

Image-plane interferometry was
successfully used by Michelson in 1890
to measure the satellites of Jupiter. An
imaging interferometer can be
designed to create high resolution
images over a wide field of view.



Resolving Faint Companions

Pupil-plane interferometry is well-suited for

Image-plane interferometry is well -suited f
suppression of starlight.

high spatial resolution studies
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First Telescope Demonstration of Nulling

Nulling at the MMT
—Nature }338; 395, 251.
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Internal Coronagraphs: main approaches

Apodization
Beam splitting and destructive interference

(Bracewell nuller)
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Zodiacal dust
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Asteroid belt thought to provide
much of the dust seen at Earth
(Dermott et al. 2002).

Recent Dynamical models (cf.
Nesvorney et al. 2010) suggest
Jupiter-family comets provide
the majority of the dust for the
zodiacal cloud.

Origin of zodiacal dust B ’
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The Contrast Problem E"'

. SAO Solar System Model at 10 PC
Wy T ™% Planet Finding missions aim to:

107 b { detect Earths 10-° fainter in
10-8 L 1 Visible.
102 L | detect Earth 1077 in the IR.

—

Current state of the art:

1 Fomalhaut b: 10-°, but 150x

] separation.

{ HR 8799b: 10* but 17x separation.

%{8799 b

1 Our own Zodiacal dust:

I, erg/(cm? s pm)

1 Exozodiacal dust becomes a problem:
\ 10 zody or above.

: \\q LBTI can show us what exists
100 (planets or dust disks) at faint
levels around nearby stars.

0.1
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Bil
Zodiacal Dust in Context

probed by Dynamical Models  probed by LBTI/LEECH survey
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Asteroid Belt Kuiper Belt
~150 K warm dust ~50 K cold dust

exo-zodi probed by I debris probed by Herschel, HST and ALMA
debri bed by Spitz
LBTI/HOST survey ebris probed by Spitzer courtesy K. Su



An Earth embedded in a

PIAA image —— 1 zodi

PIAA image —=- 10 zodi
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Flux is problematic for any imaging mission.

zodiacal dust disk

PIAA imoge —— 1 zodi
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from Defrere et al. 2012

Clumpiness (resonances) complicates the detection.
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BIf

The problem with exozodiacal dust

Source of noise and confusion for future exoEarth direct
imaging instruments:

1 . Solar zodiacal cloud ~300 times brighter than Earth (IR and Visible);

2. Asymmetric features can mimic the planetary signal.

PIAA image —— 50 zodi PSF fitting
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Sun-Earth system at 10 pc surrounded by a 50-zodi exozodiacal disk (according
to self-consistent mogels of Stark et al. 2012)






R/
LBTI Key Parameters B/ /’

Sensitivity
LBTI has two 8.4 m mirrors mounted on a single
structure. ‘ % '

High Contrast

The AO system creates an image with a Strehl
of >95% at 3.8 um.

Resolution

ﬂ'k;‘ | ' ‘ Beam combination provides the equivalent
LBTi*u

talled on ’rhe TeleSCOPQ | resolution of a 22.7 m telescope.
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Fast (1 kHz )Corrector
(Piston, Tip-Tilt)

Incoming Light

q\é

LBTI Layout

Slow Corrector
(Piston, Tip-Tilt)

Incoming Light
bz,,-%

2-2.4 and 8-13 um light
Nulling and Imaging

Camera (NG

: Nulling
3-5 um light Interferometer

Phase Sensor
(2-2.4 um)

LMIRCam
(3-5 um)

BIf



Instantaneous null

Nulling Implementation
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Chromaticity of Null

Fraction of light remaining in nulled out put is given by

NOL) = 1+ cos(P(N))
where 2
D(A\) = Py + 1
4N 4

Level of suppression is good over only a narrow bandwidth.

Three fixes: Rotate one beam 180 degrees (Shao and Colavita)
Send one beam through focus (Gay and Rabbia)
Balance dispersion in air by dispersion in glass
(Angel, Burge and Woolf)

Dispersion Compensation allows out-of band light to be used to sense phase
(Angel and Woolf 1997)



Creating an Achromatic Null

An null is created by introducing a 0.5 wave path difference between the two beams.
This phase shift can be made achromatic by balancing a slight difference in path with an

Path difference: 51 um
difference in substrate thickness: 21 um

/ZnSe substrate

Thin film coating stack



Phase Compensation of Null
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Beam-Combiner Design
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Thin film design creates
50% amplitude splitting in
nulling and phase sensing
bands.

AT = 2 % between
outputs for 2x10-> null.

Differential thickness of
glass creates 0.5 waves
phase difference at 11 um
and 0.75 wave phase
difference at 2 microns.

A @ = 0.5 degrees =15
nm
for 2x10- null.



Phase Sensing Outputs
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For a 7 wave phase shift the outputs are approximately equal when the phase is

correct.
The difference of the outputs divided by the sum provides a sensitive error signal

for pathlength variations, independent of variations in relative intensity.



Common-Path Phase Sensing and Correction

11 um 2.2 um

Output 1

Science Output 1 Phase Output 1

path_difference =0
sciencel phasel

Output 2

Science Output 2 Phase Output 2

apienice? nhase?



Phasing Algorithm B ’

Peak position
provides tip/tilt error signai1
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Fourier
Transform Amplitude Phase

Argument of FT
t position of peak provides
phase ernor signal

10 20 30

Create small pupil images

Introduce tilt difference.

Fourier Transform provide three observables: @, Otip, Otitt
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®Phase Tracking with LBTIBI

PhasecamOVMSUT201603050801.txt

Feed-forward (FF)

— OVMS PL Value off vs. on
-2 — Kunwrapped phase *2.2/360

—  OVMS PL Gain
4 Phasecam Gain / 100
- A — Commanded Pathlength
i n l n N ) - X T BT T TT
WEN W WD IR A WS

PhasecamOVMSUT201603050801.txt

Pathlength (um)
o

2

4l
2 Phase corr. at low
s M o b A AN A et e et A e gain to show FF is
> 0 working
- | — OVMS PL Value
—  Kunwrapped phase *2.2/360
—— OVMS PL Gain
Phasecam Gain / 100
-4 A }\ A 2 — Commanded Pathlength
1 . N P S— - T 1T
682 683 684 685 686 687 688
scan time (s)

« RMS was reduced from 95 deg. to 65 deg. when using OVMS+

e Still diagnosing low frequency transients that appeared other
nights in FF signal.
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v [cycles/arcsec]

Our first detection: 1 Crv

3 hours of nulling observations in February 2014 around transit;
Outer disk seen by Herschel (i = 46.8°, PA = 116.3°, Duchene et al. 2014);
Excess: 17% (IRS), 4% (KIN);

uv coordinates for eta_crv
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HOSTS Target 1: beta Leo
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Commissioning tests on the star 3 Leo
detected a disk at the level of 6000500

ppm.

This corresponds to a disk that is
90 + 8 zod..

Cold disk known from Herschel to
be at R=40 AU.

11 ym emission detected by LBTI
is likely at ~4 AU.



Nulling Interferometry: Space-based

NASA studied using nulling interferometry in 1990s and 2000s. They developed a telescope

design to search
for terrestrial planets, and probe them for life. The mission was called Terrestrial Planet

Finder Interferometer.

Further studies have suggested a coronagraph or occulter will be more cost-effective and
versatile.



Nulling Interferometry: Space-based
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Why from space?
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Space-based telescope gives >10® reduction in background light.
=> Collecting area can be <10 of ground based system.



Why an interferometer?

Need resolution < 0.1 arcsec to spatially resolve a
planetary system. (10 m at 10 um)

Only need a couple of meters® collecting area for
cooled space-based system to get detectable flux
from planet (1 photon/s/micron, in the presence of
100 photons/s of background).
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Small Interferometer deployment

60cm or 1-2m Deployment:
telescopes 1) Open and lock solar panels.
2) Open and lock truss




40m TPF
folded in an
Atlas V
rocket
shroud







TPF truss nuller ready for use




TPF Transmission Pattern

Interferometer rotates about its
pointing center to rotate the
beam pattern about the star.

Planet Signals are modulated by
rotation.

Detected Signal is the sum of all
the light transmitted through the
beam pattern.

1 arcsec




Total Intensity (Wy)
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Signal from an Earth-like Planet
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Detected signal
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combiner.



Total Intensity (Wy)

Signal from a system of planets

| 1 arcsec |
I I

TPF Signal of Earth,
u | | T l l l Venus and Jupiter.
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Reconstruction of the Image

Intensity of a given position is the sum of
the signal as a function of rotation times
the beam pattern transmission for that
rotation

Raw image shows the prominent sources plus
artifacts.

Algorithm similar to CLEAN can be used fo
form a higher fidelity image.

An image can be generated for each channel
of the instrument spectrometer. This
results in a spectrum for each point
source



Extracting the Spectra

Each wavelength channel allows a similar image
reconstruction, and a measurement of the flux in that
channel. The spectrometer will have a resolution of R=20.
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Which planet does it resemble (if any)?
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