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Transmi(ance,	throughput,	&	
vigne5ng	

•  How	bright	is	my	image?	
•  Can	I	record	it?	
•  Parameters	that	describe	the	ability	of	the	op(cal	
system	to	transmit	power	

•  What	is	the	diameter	of	my	op(cal	elements?	
•  Can	they	be	fabricated	or	just	designed!	
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Kirchoff’s	Laws	
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If	a	body	of	mass	is	at	thermal	equilibrium		
with	its	surrounding	environment,		
conserva(on	of	energy	requires	that	
	
 
Φincident  = Φabsorbed  + Φreflected  + Φtransmitted

By	dividing	both	sides	by													,	we	write	α	+	r	+	t	=	1,		
where	α	is	absorbtance,	r	is	reflectance,	and	t	is		
transmi]ance.		For	an	opaque	body	where	there	is	no		
transmi]ance	(t	=	0),	the	radia(on	is	either	
absorbed	or	reflected.	Therefore,	
	

 Φincident

  watts absorbed = α ⋅ E ⋅area = ε ⋅ M ⋅area = watts radiated.



Minimize	reflectance	loss	to	maximize	
transmi]ance	

•  An(reflec(on	coat	has	limita(ons	
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n2	 n3	n1	
 
Ri λ( ) = IReflected λ( )

I Incident λ( )

If		n2 (λ) = n1(λ)n3(λ)

Then	reflectance	is	zero	&		
transmi(ance	is	maximized	

Ocen	a	physical	material	with	just	the	right										
does	not	exist		

n2 (λ)



Power	at	the	focal	plane	

•  Determined	by	
•  Transmi]ance	
•  Etendu	or	“through-put”	
•  Polariza(on	(discussed	later)	
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Étendú	or	throughput	[pp103]	

•  Calculated	using	tools	of	1st	order	op(cs	
•  Expresses	the	geometric	ability	of	an	op(cal	
system	to	pass	radia(on	from	object	space	to	
image	space	

•  Ray	trace	can	indicate	an	excellent	image	but	if	
no	light	gets	through	the	system,	there	is	no	
image	–	SNR=0.0!	

•  Consider	2	general	rays,	pass	them	through	the	
op(cal	system,	then	look	at	pupil	and	image	
planes	
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Étendú	or	throughput	
Consider	2	general	rays	
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u1

y1

u1
y2

y2u2

u2

φ2
Plane	1	 Plane	2	 Plane	3	

n1 n2

y1

  n2u2 = n1u1 − y1φ2 n2u2 = n1u1 − y1φ2

From	Ch	2:	

Red	



Étendú	or	throughput	
Consider	2	general	rays	
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Invariant	on		
refrac(on	

φ2 = (n1 − n2 )C2 =
(n1 − n2 )
R2

n2u2 − n1u1( )
y1

= φ2 =
n2u2 − n1u1( )

y1

The	opGcal	power	is	the	same	for	both	rays	
Recall	that:		

n1u1y1 − n1u1y1 = n2u2y1 − n2u2y1 = H

Re-group	the	terms	
Then	we	discover	that	there	is	an	invariant		
between	any	two	planes	in	the	op(cal	system	

  n2u2 = n1u1 − y1φ2 n2u2 = n1u1 − y1φ2



Étendú,	Helmholtz,	LaGrange	Invariant	
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  n1 u1y1 − u1y1( )  = n2 u2 y2 − u2 y2( )  = H

Rewrite	this	equa(on	with	the	object	plane	on	the	LHS	

  y1 = 0
And	and	the	pupil	plane	on	the	right	hand	side	

  y2 = 0
Then	

H		has	units	of	angle	×	distance,	e.g.,		
radians	×	cen(meters.	
	

  nuy1 = nuy2 = H



Area	solid	angle	product	
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+y

+y +z

Object	plane	

Pupil	plane	

chief	
AP	

ΩP

ΩO

AO	  AOΩP = APΩO
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Confusion?	

•  Transmi]ance,	transmission,	transmissivity	-	
dimensionless	

•  Throughput,	etendu,	Op(cal	Invariant	
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• 				Units	of	solid	angle	×	Area,	when	calcula(ng	op(cal	
system	capacity	to	transmit	radia(ve	power		
			
• 					Units	of	radians	×	length	for	op(cal	ray	trace	design		



Useful	rela(onships	
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Ω = π
4 f #( )2



Vignetng:	Étendú	is	not	conserved	at	
field	points	
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  Rk ≥ yk + yk .For	no	vignetng,	the	radius		
of	the	kth	surface	must	be		

1	

2	
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Class	outline	
•  The	challenges	of	space	op(cs	
•  Derive	Etendu,	throughput,	transmi]ance	
– Power	to	the	focal	plane	

•  Geometric	aberraGons:	thermal,	structural,	
metrology,	tolerancing	&	A/O	

•  Scalar	wave	image	forma(on	
•  Vector-wave	image	forma(on:	polariza(on	
aberra(ons	–	par(al	coherence	&	correlated	wave	
fields	

•  Hubble	trouble	



Image	loca(on,	size,	orienta(on	 16	



Space	op(cs	differ	from	ground	op(cs	

•  No	atmospheric	turbulence	
•  High	angular	resolu(on	astronomy	
•  Diffrac(on	limited	important	
•  Aberra(on	really	make	a	difference	
– Metering	structure	

•  Thermal	(radia(ve,	conduc(on,	convec(on),		
•  Dynamics	

– Op(cal	surfaces	–		
•  Sta(c	&	dynamic	wavefront	control	



1st	order	op(cs	
•  Two	planes,	normal	to	the	axis	are	important	
in	an	op(cal	system	
– Pupil	plane	

•  Entrance	pupil	
•  Exit	pupil	

–  Image	plane	
– A	complicated	op(cal	system	can	have	several	
image	planes,	pupil	planes,	but	ONLY	one	each:	
•  Entrance	pupil	
•  Exit	pupil	
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Two	rays	define	loca(on	of	image	&	pupil	
planes	

•  The	volume	required	for	an	op(cal	system	is	defined	
by	both	the	chief	ray	and	the	marginal	ray	
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Object	plane	

Pupil	plane	

Image	plane	

marginal	

chief	

Y-Z	Pl
ane	is

	called
		

the	M
eridio

nal	pla
ne	

radius of the clear aperture = r z( ) = y + y



A	fan	of	rays	provides	an	es(mate	of		
image	quality	
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Object	plane	

Pupil	plane	

Image	plane	

marginal	

chief	

Spot	diagram	



Tolerancing	an	op(cal	system	

21	

Sources	of	errors	
Mechanical	&	structural	



Coordinate	system	for		
geometric	aberra(on	analysis	
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Sign	conven(ons	
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Sign	conven(on	
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Rays	and	Geometric	Waves	

25	Aberra(on	Theory	(1)	

  
W  ′ρx , ′ρ y( )   =  reference ray path – ray path

λ 
 = 

OPD ′ρx , ′ρ y( )
λ

,

Independent	of		

λ



Defini(on	of	Wavefront	aberra(on	W	
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′u x, y( )  =  u x, y( ) ⋅ exp – j

k
2 f

x2  + y2( )⎡

⎣
⎢

⎤

⎦
⎥ ,

  
E = – j

k
2 f

x2  + y2( ) 1 + W x, y( )⎡⎣ ⎤⎦ ,

The	equa(on	for	a	spherical	wave	converging	to	a		
point	at	a	distance	f	from	the	pupil	(lens)	is 		
	

And	x	and	y	are	Cartesian	coordinates	across	the		
pupil	plane.			
An	expression	that	includes	the	wave	aberra(on	term	W.	
	

  
k = 2π

λ

Now what is W x, y( )?



Geometrical	wavefront	error	
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The	geometrical	wavefront	error	is		
independent	of	the	wavelength.		
If	one	wanted	to	calculate	how		
much	material	[as	a	funcGon	of		
posiGon]	is	needed	to	be	removed		
From	a	mirror	surface,	then	one		
need	to	mulGply	by	wavelength.	
	



Expand	the	wavefront	error	

•  Zernike	polynomials	
– Power	series	expansions	on	the	unit	circle	

•  Seidel	aberra(ons	
– Defocus,	(lt,	spherical,	coma,	as(gma(sm,	field	
curvature,	Petzval	



Zernike	polynomials	
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Zernike	polynomials	are	a	set	of	orthogonal	
polynomials	defined	on	a	unit	circle.	They	are	
expressed	in	either	Cartesian	(x,	y)	or	polar	(								)	
coordinates.	There	are	both	even	and	odd	Zernike	
polynomials:		
		
		

		
		

		
		
	

Zn
m (ρ,ψ ) = Rn

m ρ( ) cos mψ( )
Zn

−m (ρ,ψ ) = Rn
m ρ( ) sin mψ( )

ρ,ψ



Zernike	polynomials	
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where	the	radial	polynomials	are	defined	as	
		
	
	
	
We	will	not	use	the	Zernike	polynomials	here,	
but	rather	will	analyze	using	the	Seidel	
aberra(ons,	which	lend	themselves	to	
an	intui(ve	understanding	of	the	physical	origins	
of	the	aberra(ons.		
	

  

Rn
m ρ( ) = 

–1( )k
 n – k( )!

k!
n + m( )

2
 – k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ! ⋅ 
n – m( ) 

2
 – k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
! 

k = 0

n – m
2

∑  ρ n – 2k



Coordinate	system	for		
geometric	aberra(on	analysis	
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The	wavefront	series	expansion	for	
the		aberra(ons	yields	the	expression	
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W  = aknmhk

k , n, m
∑ ⋅ ρ n  cosψ( )m

,

By	conven(on,	first-order	aberra(on	terms	are	those		
for	which	k	+	n	–	1	=	1,		

Third-order	aberra(on	terms	are	those	for		
which	k	+	n	+	1	=	3,	and		

Fich-order	aberra(on	terms	are	those	for	which	k	+	n	+	3	=	5		
The	third-order	aberra(on	coefficients	are:		
a040,	a220,	a400,	a131,	a311,	and	a222.	
	The	fich-order	aberra(on	coefficients	are:		
a060,	a240,	a420,	a600,	a151,	a331,	a511,	a242,	and	a422.	
	



Aberra(ons	independent	of	the	op(cs	

Defocus	a020		
•  The	aberra(on	a020	is	introduced	by	an	axial	
change	in	the	focus	and	is	called	defocus.	For	
defocus,	the	aberra(on	is	corrected	by	transla(ng	
the	image	point	along	the	axis	un(l	the	sphere	
corresponding	to	the	aberrated	image	point	is	
superposed	onto	the	reference	sphere.	This	
aberra(on,	like	a111,	is	corrected	by	reposi(oning	
the	focal	plane;	it	is	not	necessary	to	correct	by	
refiguring	any	opGcal	element.		
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Aberra(ons	independent	of	the	op(cs	

Tilt	a111	
•  The	term	a111	represents	a	lateral	shic.	The	
aberrated	wave	is	(lted	about	the	vertex	of	the	
reference	wave.	This	aberra(on	can	be	corrected	
by	reposi(oning	the	focal	plane.	The	aberra(on	
term	a111	represents	a	(lt	in	the	wavefront	in	the	
y	direc(on.	 	This	aberra(on	can	be	corrected	
by	reposi(oning	the	focal	plane;	it	is	not	
necessary	to	correct	by	refiguring	any	opGcal	
element.		
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Defocus	and	Tilt	
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The	actual	surface	is	the	dashed	black		
sphere.	Standing	at	the	blue	point	looking		
lec	you	have	created	the	blue	reference		
surface.	To	super-impose	your	reference		
surface	to	the	actual	surface	you	need	to		
move	to	the	right	(+),	or	refocus	the	system		
to	make:		 a020 = 0.

To	super-impose	your	reference		
surface	to	the	actual	surface	you	need	to		
(lt	your	reference	surface	up,	or	Glt	your	
focal	plane	the	system	to	make:		

a111 = 0.



The	3rd	order	
(Seidel)	terms	

We	will	examine	
in	detail	the	
first	and	third	
order	
aberra(on	
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W  = aknmhk

k , n, m
∑ ⋅ ρ n  cosψ( )m



A	point	in	object	space	is	imaged	…	

Aberra(on	Theory	(1)	 37	

A	point	in	object	space		
is	imaged	into	several	
points	in	image	space	by		
a	geometric	aberraGons	



Tool	for	analysis:	the	spot	diagram	
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CAD	ray-trace	objec(ves	

•  For	each	point	[in	object	space]		
•  Use	trigonometry	to	trace		rays	from	a	point	in	
object	space		
–  through	a	grid	(hexapolar)	on	the	physical	surface	
of	the	lens,		

–  refract	and		
–  then	translate	to	the	next	surface	un(l	it	
–  	penetrates	the	focal	plane	at	a	point.		
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A	point	in	object	space	is	imaged	…	

Aberra(on	Theory	(1)	 40	

A	point	in	object	space		
is	imaged	into	several	
points	in	image	space	by		
a	geometric	aberraGons	



The	ray-fan	plot	
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Plot of ε yas a function
of where on the pupil 
the ray intercepted
it.

ε y = f ρy( )



CAD	ray-trace	objec(ves	

•  For	each	point	[in	object	space]		
•  Use	trigonometry	to	trace		rays	from	a	point	in	
object	space		
–  through	a	grid	(hexapolar)	on	the	physical	surface	
of	the	lens,		

–  refract	and		
–  then	translate	to	the	next	surface	un(l	it	
–  	penetrates	the	focal	plane	at	a	point.		
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Sign	conven(on	
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The	third	order	monochroma(c	terms	
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W =
  a040ρ

4 + a131hρ
3 cosψ + a222h

2ρ2 cos2ψ +

       +a220h
2ρ 2 + a331h

3ρ cosψ

Spherical	aberraGon	



Spherical	
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a040ρ
4



Spherical	in	the	presence	of	defocus	
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•  spherical	
aberra(ons	
– defocus,		
– 3rd	order,		
– 5th	order		
– 7	th	order	
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W = a020ρ
2 + a040ρ

4 + a060ρ
6 + a080ρ

8

The	only	set	of	aberraGons	on	axis	for	a		
properly	aligned	opGcal	system	

3	
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Spherical	aberra(on	region	of	the	
caus(c	
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Change	in	the	wavefront	as	a	func(on	
of	pupil	posi(on	
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∂W
∂ρ y

= 4a040ρ y
3 + 2a020ρ y( )sinψ

  

∂W
∂ρx

 =  4a040  ρx
3 +  2a020ρx( )sinψ .

  
ε r  =  ε x

2  + ε y
2  = 2R

nr
  a040  ρ +  2a040  ρ3( ).

The	radius	of	the	circle	at	the	focal	plane	is		

R
r
= 2
F #



At	the	paraxial	focus	a020=0	
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The	diameter	of	the	image	is		

  
d = 8R

nr
a040

At	the	marginal	focus	ρ = 1 and a020 = −2a040

  
ε r   = 4R

nr
  ρ − ρ3( ) a040.

R
r
= 2
F #



At	what	value	of											a	minimum		
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ρ  is ε r

  

d ε r( )
d ∂

  = 4R
nr

 1 − 3ρ2( ) a040  = 0.

 
ρ2 = 1

3
.



Spherical	aberra(on	spot	size	
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Depth	of	focus	
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Δz =  R2

nr 2  4a040r
2  + 2a020( ) λ.

  
Δz =  R2

nr 2  2a020.

  Δz =  − 8 f / #( )2
 a020.

The	distance	between	the	
marginal	and	chief	rays	is		

Radius	of	the	marginal	focus	is		

With	no	spherical	aberra(on	we	find	



Depth	of	focus	
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a020

λ
  =  1

4
,

  Δz =  ± 2 f / #( )2
 λ.

  Δz =  f / #( )2
 µm.

The	Rayleigh	criterion	is	a	quarter	wave	error	

The	depth	of	focus	for	this	criterion	is	therefore	

  
Δz =  − 8 f / #( )2

 
a020

λ
⎛
⎝⎜

⎞
⎠⎟

 λ,

At	0.5	microns	(mid	visible)	



The	third	order	monochroma(c	terms	
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W = a040ρ
4 + a020ρ

2

+a131hρ
3 cosψ

a222h
2ρ 2 cos2ψ +

a220h
2ρ 2

+a311h
3ρ cosψ

4/12/12	

Coma	

  W  =  a131hρ
3 cosψ .

Examine	the	behavior		
of	the	term		

We	just	finished	looking	at		
Spherical	aberraGon	as	a		
funcGon	of	defocus	



Coma	is	a	field	aberra(on	

•  As	you	move	off	
axis	the	exit	pupil	
appears	shorter	in	
the	y	direc(on	
than	it	does	in	the	
x	direc(on	
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h	



Coma		
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Abbe	
To	see	the	way	in	which	this	maps	to	the	image		
plane,	we	calculate	the	slopes	of	the	wavefronts-	
Remember	the	focal	plane	maps	slopes	(angles)		

  W  =  a131hρ
3 cosψ .

  

∂W
∂ρx

  =  a131h 2ρxρ y( )  =  a131hρ
2 2cosψ  sinψ( ).

  

∂W
∂ρx

  =  a131h ρ2  sin 2ψ( ).

  

∂W
∂ρ y

  =  a131h ρx
2  + 3ρ y

2( )  =  a131h ρ2  2 + cos 2ψ( ).



A	point	in	object	space	is	imaged	into	
many	points	in	image	space	
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Transverse	ray	aberra(on	are	
		
	

′ε x , ′ε y



Coma		
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  W  =  a131hρ
3 cosψ .

  
ε x  =  − R

nr
  a131 h ρ2  sin2ψ( ),

  
ε y  =  − R

nr
  a131 h ρ2  2 + cos 2ψ( )⎡⎣ ⎤⎦.

The	transverse	ray	aberra(ons	are	then	
	



Coma	
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Now	lets	examine	coma	in	the		
presence	of	defocus	

  W = a020ρ
2 + a131hρ

3 cosψ

  
ε x  = − R

nr
  2a020  ρ ⋅ sinψ  + a131 hρ2 sin 2ψ( )⎡⎣ ⎤⎦

Then	we	find	the	ray	intercept	at	the	focal	plane	is	



Coma	

4/12/12	 Aberra(on	Theory	(2)	 61	

  
ε y  = − R

nr
  a131 hρ2  + 2a020ρ  + 2a131hρ

2  cosψ( ) cosψ⎡
⎣

⎤
⎦ .

This	aberra(on	is	clearly	not	rota(onally	symmetric	

  
ε x  = − R

nr
  2a020  ρ sinψ  + a131 hρ2 sin 2ψ( )⎡⎣ ⎤⎦

  
a131 hρ3 cosψ  = a131h ρx

2ρ y  +  ρ y
3 cosψ( )



Coma	
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The	sign	on	the	coma	term	affects	its	appearance	
Acer	calcula(ng	the	the	ray	intercept,		
the	displacements	in	the	image	plane	are	given	by	

  
ε x  = R

nr
−a131 hρ2ρ y( )

  
ε y  = R

nr
−a131 hρx

2  + 3ρ y
3( ).

  
C = R

nr
a131  h,If	we	let	 then	

  
ε y  = Cρ2  2 +  cos ψ( ).ε x = Cρ

2 sin2ψ



Coma	
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The	image	plane	appearance	for	(a)	posi(ve	coma		
in	the	image	plane	on	the	lec	and	(b)	nega(ve	
coma	in	the	image	plane	on	the	right.		



Coma	related	aberra(ons	

• Coma	
– Tilt	a11	
– 3rd	order	a31	
– 5th	order	a51	
– 7th	order	a71	
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The	third	order	monochroma(c	terms	
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W = a040ρ
4

a020ρ
2 + a131hρ

3 cosψ +

a222h
2ρ 2 cos2ψ +

a220h
2ρ 2

+a311h
3ρ cosψ

4/12/12	

As(gma(sm	

Field	curvature	

Layout	the	next	three	VG	



Inves(gate	field	curvature	and	
as(gma(sm	in	the	presence	of	defocus	
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  W  = a020ρ
2  + a222h

2ρ2 cos2ψ  + a220  h2ρ2.

In	the	meridional	plane			 ψ = 0 => cosψ =1

  W  =  − a020h
2ρx

2.

From	the	first	two	terms	in	this	equa(on,		
we	see	that	if	we	add	a	li]le	field	curvature,		
that	is,	a222	≠	0	such	that	a220	=	–a222,	and		
with	a020	=	0,	we	have	a	cylinder	that	is	curved		
in	y	direc(on	and	flat	in	the	x	direc(on:	
	



Source	of	As(gma(sm	
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Image	plane	in	the	presence	of	
as(gma(sm	
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•  The	image	plane	falls	
on	three	surfaces:	
•  Tangen(al	
•  Medial		
•  Sagi]al	



Petzval	(field)	Curvature	
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Petzval	(field)	Curvature	
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  W  = a020ρ
2  + a222h

2ρ2 cos2ψ  + a220  h2ρ2.

Field	Curvature	

The	best	focus	as	a	func(on	of	field	point	will,	
	in	general,	lie	on	a	paraboloidal	surface		
If	the	as(gma(sm	is	zero,	the	image,	in	general,		
falls	on	a	curved	surface		

•  Petzval	developed	the	design	methods	to	eliminate		
field	curvature;	thus		
•  Photography	with	flat	emulsion-coated	glass	plates		
was	made	pracGcal		



Petzval	(field)	Curvature	
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It	is	possible	to	eliminate	field	curvature	by	using	two	
	separated	elements,	posi(oning	the	stop	properly,		
and	sa(sfying	the	Petzval	condi(on:	
	

  n1 f1 + n2 f2 =  0,

  

φ1

n
+
φ2

n
+
φ3

n
+
φ4

n
+
φ5

n
+ .....= 0



Petzval	(field)	Curvature	
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To	obtain	an	es(mate	for	the	geometric	spot	size,		
we	now	calculate	the	ray	intercept	plot	for	
	defocus,	as(gma(sm,	and	field	curvature.		

  W  = a020ρ
2  + a222h

2ρ2 cos2ψ  + a220  h2ρ2.

  
ε x  = − ∂W

∂x
= − 2R

nr
  a020  ρ +  a220h

2( ) ρ sinψ .

  
ε y  = − ∂W

∂y
= − 2R

nr
  a020   + a220  + a222( ) h2⎡⎣ ⎤⎦ ρ cosψ



Field	Curvature	
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Recognizing	that	y	=	cos	ψ	and	using		
sin2	ψ	+	cos2	ψ	=	1,	we	find	that	the	zonal	image		
is	an	ellipse	centered	on	the	chief	ray,	given	by	

  

ε x
2

2R nrc( ) a020 + a220h
2( )r⎡

⎣
⎤
⎦

2  + 
ε y

2

2R nrc( ) a020   + a220  + a222( ) h2⎡⎣ ⎤⎦r{ }2  = 1.



As(gma(sm	

4/12/12	 Aberra(on	Theory	(2)	 74	

y	

x	

Tangen(al	focus	line	

Medial	focus	

Sagi]al	focus	



Field	Curvature	and	As(gma(sm	
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Tangen(al	Focus	

  W  = a020ρ
2  + a222h

2ρ2 cos2ψ  + a220  h2ρ2.

By	defini(on,	the	Tangen(al	focus	condi(on	is	when	

In	this	case		
  a020  = − a220  + a222( ) h2.

  
ε x   =  − 2R

nr
a222h

2ρ sinψ ,  
ε y  =  0

The	full	length,	d	of	the	tangen(al	image	is		

  
d  = 2ε y  = 4R

nr
a222h

2.
R
r
= 2
F #



Field	Curvature	and	As(gma(sm	
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Medial	Focus	

  W  = a020ρ
2  + a222h

2ρ2 cos2ψ  + a220  h2ρ2.

By	defini(on,	the	medial	focus	condi(on	is	when	

  
a020  = − a220  + 1

2
a222

⎛
⎝⎜

⎞
⎠⎟

h2

  
ε x   =  + 2R

nr
a222h

2ρ sinψ .

  
ε y   =  + 2R

nr
a222h

2ρ cosψ



Field	Curvature	and	As(gma(sm	
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Sagi]al	Focus	

  W  = a020ρ
2  + a222h

2ρ2 cos2ψ  + a220  h2ρ2.

By	defini(on,	the	Sagi]al	focus	condi(on	is	when	

  a020  = − a220h
2.

In	this	case		

  
ε y   =  − 2R

nr
a222h

2ρ cosψ ,  and  ε x  =  0



As(gma(sm	aberra(ons	

•  As(gma(sm	

– 3rd	order	a22	
– 5th	order	a42	

– 7th	order	a62	
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Field	Curvature	(review)	
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An	in-focus	“image”	lies	on	a	curved	surface	

The	designer,	by	changing	the	power	on	op(cal		
surfaces	can	control	as(gma(sm,	but	not		
completely	depending	on	what	the	other		
requirements	are.	



The	third	order	monochroma(c	terms	
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W = a020ρ
4

a020ρ
2 + a131hρ

3 cosψ

a222h
2ρ2 cos2ψ +

a220h
2ρ2

+a311h
3ρcosψ

4/12/12	

Distor(on	

  W  =  a311h
3ρcosψ .

Examine	the	behavior		
of	the	term		



Distor(on		
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  W  =  a311h
3ρcosψ .

The	wavefront	error	W	equals	zero	provided	that	
	

  a111 = − a311 ⋅ h3

Distor(on	in	the	presence	of	(lt	is	

  
W  = a111 + a311 ⋅ h3( )ρ ⋅ cosψ

  
ε y  = − R

nr
a311 ⋅ h3,  ε x =  0



Distor(on	rescales	object	space	as	a	
func(on	of	field	point	
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Barrel	



Distor(on	rescales	object	space	as	a	
func(on	of	field	point	
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Pincushion	shics	the	image	posi(on	a	distance			

  
ε y = − R

h
a311y3

This	is	not	a	change	in	magnifica(on		
because	the	shic	is	dependent	on	
the	cube	of	the	field	posi(on	



Example	of	wide	angle	lens	with		
barrel	distor(on	
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Stop	shic	–	controls	aberra(ons	
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u
y

Image	
plane	

y

Aperture	
Stop	Marginal		

Ray	

O	

O	

u
Entrance		
Pupil	

Upper	rim	ray	

Lower	rim	ray	

Chief	Ray	



Telecentric	op(cal	system	

86	

Object	
plane	

Stop	located		
The	front	focus		
of	the	lens	

Lens	
Image	
plane	

′B

′A

A

B

Desensi(ze	the	image	quality	to	shics	in	the		
BFD	(thermal,	flexure,	creep,	etc.)	
Changing	focus	does	not	not	change	image	
plane	scale	or	the	image	centroid	



Distor(on	is	controlled	by	a	stop	shic	

Barrel	

Pincushion	

  
ε y = − R

h
a311y3

The	role	of	stop	shic	in	distor(on	



Simple	zero	distor(on	lens	
1840	
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Petzval	lens	
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• 		Front	doublet	is	well	corrected	for	spherical	but	
introduces	coma.		
• 		The	second	doublet	corrects	coma.	
• 		The	posi(on	of	the	stop	corrects	for	as(gma(sm,	but	
introduces	addi(onal	field	curvature	and	vignetng.	Total	
FOV	is	restricted	to	30	degrees.		
• 		F#	as	low	a	3.7	were	achieved.		
• 		Ideal	portrait	lens	for	the	new	inven(on	of	photography.		
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2014	State	of	the	art		
Commercial	Canon	lens		
layout	is	derived		
from	the	Petzval	lens		
of	1840	

Lens	design	resources:	
Arthur	Cox	book	&		
Patent	literature	



3rd	order	aberra(on	summary	
•  Spherical	aberra(on	depends	on	4th	power	of	the	aperture	

height			

•  Coma	depends	on	the	square	of	the	aperture	height	and	is	
linear	with	field.	

•  As(gma(sm	is	caused	by	the	difference	in	curvature	between	
sagi]al	and	tangen(al	ray	fans.	It	varies	linear	with	aperture	
and	the	square	of	the	field.		

•  Petzval	curvature		

•  Distor(on	shics	image	loca(on	and	is	dependent	on	the	cube	
of	the	field.		
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h3

∝
φ j

n j

⎛

⎝⎜
⎞

⎠⎟j=1

N

∑

ρ 4

ρ 2h

ρh2



Spherical	aberra(on	shown	on	Spoke	
Target	
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Object	 Image	



Coma	through	focus	
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Applica(ons	of	aberra(on	theory	
•  In	this	sec(on	we	describe	the	way	in	which	the	
theory	of	aberra(ons	is	applied	to	a	few	op(cal	
systems	to	show	the	reader	the	u(lity	of	this	analysis	
approach.		

•  Op(cal	ray-trace	design	computer	programs	require	
input	of	the	first-order	proper(es	on	an	op(cal	
system.		

•  The	closer	these	first-order	proper(es	are	to	an	
op(mized	design,	the	faster	and	more	accurately	the	
CAD	program	will	converge	to	an	op(mized	design	
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Applica(ons	of	aberra(on	theory	

•  The	structural	aberra(on	coefficients	were	
developed	to	simplify	the	design	process.		

•  We	will	show	how	the	structural	coefficients	are	
used	to	determine	system	aberra(ons.		

•  Here	we	discuss	aberra(ons	introduced	by	a	
plane-parallel	plate,	derive	the	aberra(on	
coefficients	a040,	a131,	a222,	a220,	and	a311,	analyze	
the	effects	of	lens	bending,	and	describe	the	
Schmidt	camera	design.		
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