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Transmittance, throughput, &
vighetting

* How bright is my image?
 Canlrecord it?

 Parameters that describe the ability of the optical
system to transmit power

 What is the diameter of my optical elements?

* Can they be fabricated or just designed!
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Kirchoff’s Laws

If 2 body of mass is at thermal equilibrium
with its surrounding environment,
conservation of energy requires that

incident  ~ absorbed reflected transmitted

By dividing both sidesby ®. .. wewritea+r+t=1,
where « is absorbtance, ris reflectance, and t is
transmittance. For an opaque body where there is no
transmittance (t = 0), the radiation is either

absorbed or reflected. Therefore,

watts absorbed=¢ - E - areca= € - M - area = watts radiated.
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Minimize reflectance loss to maximize

transmittance

e Antireflection coat has limitations

R,- ( /l) _ ! Reflected

(%)

Incident

(2)

ny
S

2

n,

Ny

If ny(A)=n,(A)n, (1)

Then reflectance is zero &
transmittance is maximized

Often a physical material with just the right 7,(4)

does not exi
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Power at the focal plane

* Determined by

* Transmittance

* Etendu or “through-put”

e Polarization (discussed later)
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Etendu or throughput [pp103]

e Calculated using tools of 15t order optics

* Expresses the geometric ability of an optical
system to pass radiation from object space to
Image space

e Ray trace can indicate an excellent image but if
no light gets through the system, there is no
image — SNR=0.0!

* Consider 2 general rays, pass them through the
optical system, then look at pupil and image
planes
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Etendu or throughput

Consider 2 general rays

Plane 1 Pl?bne 2 Plane 3
~ n, 2 i
e oy

From Ch 2:

nu,=nu —Yy 1¢2
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Etendu or throughput
Consider 2 general rays

nu,=nu —ye, N, =N, —

n, —n2

Recall that: ¢, =(n,—n,)C, =
The optical power is the same for both rays
(nu, —nu,) _ g = (n,u, —nj,)

2 —

Y i

Re-group the terms
Then we discover that there is an invariant
between any two planes in the optical system

Invariant on nmuy, —muy, = ni,y, —n,u,y, = H
refraction
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Etendd, Helmholtz, LaGrange Invariant

nl(ulj_/l_ﬁlyl): nz(ﬁzyz_uzj_/z): H

Rewrite this equation with the object plane on the LHS

¥, =0
And and the pupil plane on the right hand side
y,=0
Then — —
nuy, = nuy, = H

H has units of angle x distance, e.g.,
radians x centimeters.
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Area solid angle product

Pupil plane Zl'y

Object plane

. -
=
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Confusion?

* Transmittance, transmission, transmissivity -
dimensionless

 Throughput, etendu, Optical Invariant

* Units of solid angle x Area, when calculating optical
system capacity to transmit radiative power

* Units of radians x length for optical ray trace design
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Useful relationships

T

Q= P
4(f#)




Vignetting: Etendu is not conserved at
field points
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Class outline

The challenges of space optics

Derive Etendu, throughput, transmittance
— Power to the focal plane

Geometric aberrations: thermal, structural,
metrology, tolerancing & A/O

Scalar wave image formation

Vector-wave image formation: polarization

aberrations — partial coherence & correlated wave
fields

Hubble trouble
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Space optics differ from ground optics

 No atmospheric turbulence
* High angular resolution astronomy
e Diffraction limited important

* Aberration really make a difference

— Metering structure
 Thermal (radiative, conduction, eenrvection),
* Dynamics

— Optical surfaces —
 Static & dynamic wavefront control



15t order optics

 Two planes, normal to the axis are important
in an optical system
— Pupil plane
* Entrance pupil
 Exit pupil
— Image plane

— A complicated optical system can have several
image planes, pupil planes, but ONLY one each:

* Entrance pupil
* Exit pupil



Two rays define location of image & pupil
planes Ty

Object plane

* The volume required for an optical system is defined
by both the chief ray and the marginal ray

radius of the clear aperture = r(z)=|y| +|J|
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A fan of rays provides an estimate of
image quality

Image plane

Pupil plane

Object plane

Spot diagram
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Tolerancing an optical system

Total system
50-nm RMS

Inner ring Outer ring
35.4-nm RMS  35.4-nm RMS

I
I |
Lens 1 Lens 2
25.3nm RMS  25.3nm RMS

Sources of errors
Mechanical & structural



Coordinate system for

geometric aberration analysis
+y




Sign conventions

yA Prim =1 yﬁ hrim=1
y 4
P h
+X +X




Sign convention
OPD (—)._

Az is (+)

Reference Paraxial
wavefront focus
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Rays and Geometric Waves

reference ray path —ray path OPD(P; 9/0; )
l - b

w(pl.p, )=

b 4y Aberrated
—1—> ’ ‘ wavefront
px ’py

Reference‘ >
spherica

wavefront

Independent of

Paraxial A«
image plane
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Definition of Wavefront aberration W

The equation for a spherical wave converging to a
point at a distance f from the pupil (lens) is

ko
u’(x,y)zu(x,y)-exp —]—( +y )
- 2f
And x and y are Cartesian coordinates across the
pupil plane.
An expression that includes the wave aberration term W.

Now what is W (x,y)?



Geometrical wavefront error

The geometrical wavefront error is
independent of the wavelength.

If one wanted to calculate how
much material [as a function of
position] is needed to be removed
From a mirror surface, then one
need to multiply by wavelength.
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Expand the wavefront error

e Zernike polynomials

— Power series expansions on the unit circle

e Seidel aberrations

— Defocus, tilt, spherical, coma, astigmatism, field
curvature, Petzval



Zernike polynomials

Zernike polynomials are a set of orthogonal
polynomials defined on a unit circle. They are
expressed in either Cartesian (x, y) or polar ( p.¥ )

coordinates. There are both even and odd Zernike
polynomials:

Z'(p.y)= Ry (p)cos(my)
Z,"(p.y)=R(p)sin(my)



Zernike polynomials
where the radial polynomials are defined as

n—m k
: (_1) (n—k)! n—2k
S Tm) | (o) |7
k! —k | - —k |!
2 2
We will not use the Zernike polynomials here,
but rather will analyze using the Seidel
aberrations, which lend themselves to

an intuitive understanding of the physical origins

of the aberrations.

R!(p)=
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Coordinate system for

geometric aberration analysis
+y




The wavefront series expansion for
the aberrations yields the expression

W= Z aknmhk -p”(cost//)m :
kn,m
By convention, first-order aberration terms are those
forwhichk+n-1=1,
Third-order aberration terms are those for
whichk+n+1=3, and
Fifth-order aberration terms are those for whichk+n+ 3 =
The third-order aberration coefficients are:

Ooa0r 0220, Aagor 131, 0317, AN 05y
The fifth-order aberration coefficients are:

Oo60r T2a00 Aa20) Te00r 1517 3315 5115 Tpany AN 0y
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Aberrations independent of the optics

Defocus a,,,

* The aberration a,, is introduced by an axial
change in the focus and is called defocus. For
defocus, the aberration is corrected by translating
the image point along the axis until the sphere
corresponding to the aberrated image point is
superposed onto the reference sphere. This
aberration, like a,,,, is corrected by repositioning
the focal plane; it is not necessary to correct by
refiguring any optical element.
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Aberrations independent of the optics

* The term a,,, represents a lateral shift. The
aberrated wave is tilted about the vertex of the
reference wave. This aberration can be corrected
by repositioning the focal plane. The aberration
term a,,, represents a tilt in the wavefront in the
y direction.  This aberration can be corrected
by repositioning the focal plane; it is not
necessary to correct by refiguring any optical
element.
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Defocus and Tilt

The actual surface is the dashed black
sphere. Standing at the blue point looking
left you have created the blue reference
—® —O—surface. To super-impose your reference
surface to the actual surface you need to

move to the right (+), or refocus the system
to make: dy,, =0.

To super-impose your reference
surface to the actual surface you need to
F= - — O ftilt your reference surface up, or tilt your
"e. focal plane the system to make:




T h e 3 rd O rd er Coefficient [k, [, m] Name
. First order
(Seidel) terms 00 el (deforms)
111 Transverse (tilt)
We will examine Third order _
040 Spherical
in detail the 131 Coma
. . 222 Astigmatism
first and third T T —
o) rd er 400 Piston
. 220 Field curvature
aberration Fifth order
060 Fifth-order spherical
151 Fifth-order coma
242 and 240 Oblique spherical
m 333 Elliptical coma
W= 2 aknmhk p ! (COS l//) 422 Fifth-order astigmatism
k,n,m 511 Fifth-order distortion
600 Piston
420 Fifth-order field curvature

Aberration Theory (1)
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A point in object space is imaged ...

A point in object space
is imaged into several
points in image space by
a geometric aberrations

/7

> <<




Tool for analysis: the spot diagram

.....
ooooooooooooo
ooooooooooooooo
00000000000000000
00000000000000000
0000000000000000000
ooooooooooooooooooo
ooooooooooooooooooo
000000000000000000
ooooo
ooooooooooooooooooooooooooo
...................
ooooooooooooooooooo
ooooooooooooooooooo
0000000000000000000
00000000000000000
00000000000000000
ooooooooooooooo
0000000000000

°
.....

Square pattern Hexapolar pattern
(equally spaced rays)
(a) (b)
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CAD ray-trace objectives

* For each point [in object space]

e Use trigonometry to trace rays from a pointin
object space

— through a grid (hexapolar) on the physical surface
of the lens,

— refract and
— then translate to the next surface until it
— penetrates the focal plane at a point.



A point in object space is imaged ...

A point in object space
is imaged into several
points in image space by
a geometric aberrations

/7

> <<




The ray-fan plot

Plot of £,as a function

of where on the pupil

/
the ray intercepted 2
it.  _pe=nT 5
_ - P
€,=1 (,0 y) '
(a)

=N

NN

Focug




CAD ray-trace objectives

* For each point [in object space]

e Use trigonometry to trace rays from a pointin
object space

— through a grid (hexapolar) on the physical surface
of the lens,

— refract and
— then translate to the next surface until it
— penetrates the focal plane at a point.



Sign convention
OPD (—)._

Az is (+)

Reference Paraxial
wavefront focus

Aberration Theory (1)
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The third order monochromatic terms

W =

a,., hp’cosy +a,, h’p, cos2y +

a040p 131

ﬁ +a,, h°p” +a,, ’pcosy

Spherical aberration
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Spherical a040p4

— —
mirror _ MIrror |
‘ tool | tool | |
]

(a) (b)



Spherical in the presence of defocus

4 2
W=ay,, p +ay, p

Chief—s ... Parabola

Ch|€f—> ..........................
Marginal»

(b)
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3 rd order spherical aberration

<
I

>
A0 P

4
Aos0P

6
Aoe0 P

g
Aogo P

The only set of aberrations on axis for a

properly aligned optical system

* spherical

aberrations

—defocus,

—3" order,

—5t org

er

PEFOCULS

—7 th order
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Spherical aberration region of the
caustic

Paraxial focus
Minimum circle l

—
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Marginal focus

Caustic region

Aberration Theory (1) 48



Change in the wavefront as a function
of pupil position

oW
ap (4a040p +2a,,p. )smw
ow
ap (4a040p +2a,,p, )sml//

The radius of the circle at the focal plane is

R_
r

8r=\/8§+8i :i—f(ao4op+ 2a,,, p3).

2z
F*



At the paraxial focus a,,,=0

The diameter of the image is

R
d8a

nr

At the marginal focus p=1and ay,, =-2q,,

R 2

P~ ,0)040- T

4R
( r  F7

nr



At what value of p is £ a minimum

e) 421 3p%)a, =0
p* =-

3



Spherical aberration spot size

Location along
axis

Paraxial

Minimum
Circle

Marginal
Focus

4/12/12

Diameter

R
8 — Ay
nr

R
2— - gy
nr

J3 R

16 —a
9 nr 040

Aberration Theory (2)

Distance from
paraxial focus

0.0
R
_3W Aoy
R2
4 5 " Aoao

nr
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Depth of focus

The distance between the

2
marginal and chief raysis  Az= R_2(4a040r2+2a020)1,
nr
Radius of the marginal focus is €= 8\/5. K Gy
9 nr
R2
With no spherical aberration we find Az= _nr2 2a,,.

Az=—8(f14) ay,,



Depth of focus

Az=—3§( f/#)zi%]x,

The Rayleigh criterion is a quarter wave error

Qoo _ l

A4
The depth of focus for this criterion is therefore

Az=+2(f/#) 2. At 0.5 microns (mid visible)

Az=(f/#) um.



' The third order monochromatic terms

We just finished looking at
Spherical aberration as a
function of defocus

Coma
h2 2
(NP~ Ccos2y+
12 0> Examine the behavior
Ayt P of the term
+ay, 'p cosy

W= amhp3 COSVY/.
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Coma is a field aberration

* As you move off
axis the exit pupil
appears shorter in
they direction
than it does in the
X direction




Abbe
To see the way in which this maps to the image

plane, we calculate the slopes of the wavefronts-
Remember the focal plane maps slopes (angles)

4/12/12

Coma

W=a,,hp’ cosy.

+3p° ) = amhpz(Z +0082w).
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A point in object space is imaged into
many points in image space

Transverse ray aberration are
/ /
£,
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Coma w=a_ hp’cosy.
The transverse ray aberrations are then

R 5 .
€ =——r>\a., hp sin2v |, R >
x nr( 13171P l//) gy:—;[amhp (2+COSZI//):|.
Chief
ray
v
60 deg ‘;“Li A
8)6
6 &2 4 &8
5&1
Image plane

Pupil plane
(a) (b)
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Coma

Now lets examine coma in the
presence of defocus

2 3
W=a,p +a,hp cosy

Then we find the ray intercept at the focal plane is

€,=~ £ [zaozo p'Sinl//_l_am hp2 Sin(zl//)]

nr
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Coma

€ =— % |:2Cl020 psiny +a, ., hp’ sin(Zw)]
€ == % [am hp’ +(2a020p +2a131hpzcosy/)cosy/}

a,,, hp’cosy = a131h(pipy+ P cost//)

This aberration is clearly not rotationally symmetric



Coma

The sign on the coma term affects its appearance

After calculating the the ray intercept,
the displacements in the image plane are given by

_R 2 R
€= (_a131hp py) gy:;( a, hp, +3P)
R
fwelet C=—a, h, then
nr

e, =Cp”sin2y ey:Cp2(2+ cost//).



Coma

A \V/
<45 o) & <

Y/ A

(a) (b)

The image plane appearance for (a) positive coma
in the image plane on the left and (b) negative
coma in the image plane on the right.
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Coma related aberrations

* Coma
—3rd order a5,

_cth -~
5" order ac,
7t order a5,
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The third order monochromatic terms

W = 61040104
a, P +a.hp’ cosy +

Field curvature

Astigmatism

3
+a, W pcosy

Layout the next three VG
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Investigate field curvature and

astigmatism in the presence of defocus

4/12/12

_ 2 2 2 2 2 2
W=a,p +a,h p cos " y+a, h p”.

In the meridional plane ¥ =0 => cosy =1
22 22 2
W= ay,h"y" +ay, 1"y~ +ag,y".

From the first two terms in this equation,
we see that if we add a little field curvature,

that is, a,,, # 0 such that a,,,=-0a,,,, and
with a,,, = 0, we have a cylinder that is curved

in y direction and flat in the x direction:

== aozothj
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Source of Astigmatism

If one sits at the focal plane, at a point off axis, looking back into the exit pupil,
one sees that the optical power (lens curvature) for this tilted lens (off axis) in the

meridional plane becomes less than that in the y = 90 deg or the x-z plane. It is
this difference in optical power that gives rise to astigmatism.

Sagittal focus .~ w*

> 7/
p ./
. 7 .
o 7 /
o 7/ e
of ’ :
o / 7 /”
o ’ ok -~
RO 7 -
7
. /
"' 4
7 .
2€
zZ

Medial focus

Tangential focus line
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Image plane in the presence of
astigmatism
* The image plane falls
on three surfaces:
* Tangential
 Medial
e Sagittal




Petzval (field) Curvature

— Astigmatism

+ Astigmatism

\\\\ Gaussian
\\\\ / image \
N\
\ plane
\ I
}' = |
P Z

1 . -
A \\
N
j \

Petzval Petzval
L surface surface > T
(a) (b)
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Petzval (field) Curvature

Field Curvature

2

. 2 2 2 2 2
W=a,p +a,h p cos y+a, hp

The best focus as a function of field point will,
in general, lie on a paraboloidal surface

If the astigmatism is zero, the image, in general,
falls on a curved surface

 Petzval developed the design methods to eliminate

field curvature; thus
* Photography with flat emulsion-coated glass plates

was made practical
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Petzval (field) Curvature

|

It is possible to eliminate field curvature by using two
separated elements, positioning the stop properly,
and satisfying the Petzval condition:

n f+n,f, =0,
0,0, 9, 0 0

n n n n n

4/12/12 Aberration Theory (2) 71
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To obtain an estimate for the geometric spot size,f' |
we now calculate the ray intercept plot for
defocus, astigmatism, and field curvature.

2

. 2 2 2 2 2
W=a,p +a,h p cosy+a, h p".

ow 2R
£ =— F ( a,,p+a, hz)psml//
£ =— W __2R [aozo +(a220+a222)h2 }pcost//

Y dy nr
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Field Curvature

Recognizing that y = cos ¢ and using
sin? ¢ + cos? Y = 1, we find that the zonal image
is an ellipse centered on the chief ray, given by

2 2

[(ZR/nrc)(aozo +a220h2)r}2 {(2R/nrc)[a020 +(a220+a222)h2]r}2
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Astigmatism

Tangential focus line



Field Curvature and Astigmatism
Tangential Focus
Wzaozop2 +a222h2p2 cos’ v+a,, hp’.

By definition, the Tangential focus condition is when

2
aOZO (a220+a222)h )
In this case "R
e =———a, h’psiny, £, =0
nr

The full length, d of the tangential image is
R 2
r F'



Field Curvature and Astigmatism

Medial Focus
2 2 2 2 2 2
W=a, p +a,h p cos"y+a, h p".
By definition, the medial focus condition is when

1
Qoo =" [azzo +5 a5, j h*

£ —+2—Ra h’ psin
X nr 222 p l//

2R 5
€,= +; a,,,h”pcosy



Field Curvature and Astigmatism
Sagittal Focus

. 2 2 2 2 2 2
W=a,,p +a, h p-cos"y+a, h p".

By definition, the Sagittal focus condition is when

_ 2
aozo_ azzoh y

In this case

2R
£, =———a,,h’pcosy,and e =0
nr



Astigmatism aberrations

* Astigmatism
—3" order a,,

_cth
5" order a,,

_7th
7t order a,

4/12/12
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Field Curvature (review)
An in-focus “image” lies on a curved surface

+ Astigmatism 1 — Astigmatism

1
N Gaussian

\\:\ ~ image NG

Petzval Petzval
surface ' surface
(a) (b)

The designer, by changing the power on optical
surfaces can control astigmatism, but not
completely depending on what the other

requirements are. . ...0



The third order monochromatic terms

Examine the behavior

W = GOZOP4 of the term
2 3
a,.p +a.,hp cosy :
- W=a, hpcosy.
a,,,h”p-cos2y+
AP
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. . 3
Distortion W=a, h’pcosy.
Distortion in the presence of tilt is

— ° 3 °
W—(azm+az311 h )p CoSyY/
The wavefront error W equals zero provided that

_ 1,3
a111_ a311 h

R
g = ——a311-h3,8x =0
4 nr



Distortion rescales object space as a
function of field point

Barrel
distortion

Pincushion
distortion




Distortion rescales object space as a
function of field point

OBJECT PINCUSHION BARREL
DISTORTION DISTORTION

T A
JREARQRESE

Pincushion shifts the image position a distance

This is not a change in magnification
R 3 s
£, ,=——a,,y" because the shift is dependent on
h the cube of the field position
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barrel distortion
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Stop shift — controls aberrations

Margina| - Aperture Image
arginal
© -1 ~~.1 Stop olane
Ray/,/ y \\\\\
////l/t l ‘N\\\N\
O
T
Upper rim ra II:E)ntr.zlamce
~~~~~~~ 1 Pupi |
v NC T _Chief Ray
SN <«
L= <«
Lower rimr

Aberration Theory (1) .



Telecentric optical system

A/

Stop located
Object The front focus
plane of the lens

Image
Lens plane
Desensitize the image quality to shifts in the

BFD (thermal, flexure, creep, etc.)

Changing focus does not not change image
plane scale or the image centroid

86



The role of stop shift in distortion

R ;
Sy — _Zamy
Barrel
distortion
Pincushion
distortion
as, >0~

Pincushion

Distortion is controlled by a stop shift



Simple zero distortion lens
1840




Petzval lens
I

N - @

* Front doublet is well corrected for spherical but
introduces coma.

* The second doublet corrects coma.

* The position of the stop corrects for astigmatism, but
introduces additional field curvature and vignetting. Total
FOV is restricted to 30 degrees.

 F# aslow a 3.7 were achieved.

 |deal portrait lens for the new invention of photography.




2014 State of the art

Commercial Canon lens |
layout is derived
from the Petzval lens E—
of 1840 R —
. r
i A
Lens design resources: r 1 T\Hl U X’JM{ (}
Arthur Cox book & ~ A

Patent literature
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39 order aberration summary

Spherical aberration depends on 4% power of the aperture
height 4

o,

Coma depends on the square of the aperture height and is
linear with field. P )

Astigmatism is caused by the difference in curvature between
sagittal and tangential ray fans. Ité/arles linear with aperture
and the square of the field. Ph

N
Petzval curvature OCZ T

Distortion shifts image location and is dependent on the cube
of the field. h3
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Spherical aberration shown on Spoke
Target
Object Image

I
u Al :/f///,/,//g/////

0

: 72 ————— X 1
W —— ————— '
82 — —_p J
k. e

/////m\ R NI |



Coma through focus

t.' e .
ihich, <
7€y e ° 2
s, A c - b
PRRRT M
cen"” \.

Cardoid at
..... A e, aou -
'..,:.:n;-.... .-.-'-:-_._..:o-... .‘_' -._._.-‘ '-.. I a';' "\[)

99-6

'/rcug 6( ‘\«J’
1T “)

Figure 9-25. Spot diagrams for coma (hexapolar grid).
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Applications of aberration theory

* |In this section we describe the way in which the
theory of aberrations is applied to a few optical
systems to show the reader the utility of this analysis
approach.

e QOptical ray-trace design computer programs require
input of the first-order properties on an optical

system.

* The closer these first-order properties are to an
optimized design, the faster and more accurately the
CAD program will converge to an optimized design
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Applications of aberration theory

e The structural aberration coefficients were
developed to simplify the design process.

 We will show how the structural coefficients are
used to determine system aberrations.

 Here we discuss aberrations introduced by a
plane-parallel plate, derive the aberration
coefficients a,,,, 0,51, 05,5, G550, @aNd a5, analyze
the effects of lens bending, and describe the
Schmidt camera design.
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