Lecture 2

Optical systems for space-based scientific remote sensing

University of Arizona January 24, 2013

Dr. James Breckinridge Pasadena, CA. jbreckin@optics.arizona.edu

Space Telescope Optical System:

The optical system scientist works from the source through the interpretation

System development process

- Science
 - "Determine the scope of global warming"
- Science measurement objectives
 - "Measure the annual abundance of CO_2 to an accuracy of 0.1%"
- Functional requirements (constraints on the instrument & system)
 - "the needed signal to noise is 60:1, global measurements, season..."
- Create a System architecture
 - "Telescope with spectrometer, low earth orbit, down link capacity, multiple spacecraft, emission or absorption,"
- Develop a point design
 - "Grating or Fourier transform spectrometer, spectral resolution, $A\Omega$??"
- Model source, telescope/instrument and data processing to demonstrate the science measurement objectives have been met.
- Is new technology needed?

Example of a science measurement requirement

- Mission studies
 - Science measurement requirement
 - Measure the central intensity of an absorption line at 483.56 nm in the spectrum of a 14th magnitude star with 5% accuracy at the 95% confidence level

Today

Thursday, January 24, 2013

- Telescope system architectures
 - Filled, segmented, sparse, interferometers
- The NASA process
- Overview of large ground based telescopes
- <u>Requirements development</u>
 - Science measurements, technology risk map science into realized engineering

- Diameter increases angular resolution
- Area increases radiation collected more power
 Today

Telescope aperture

- Cannot always afford a monolith
 - Replace the stiffness needed for an optical telescope with electronics
 - Wavefront sensing & control
 - Optical metrology
- Segmented
- Sparse
- Interferometry
 - Spatial interferometry

– Temporal frequency interferometry (FTS)

Segmented apertures

 What kind of aperture are you going to build?

JWST mirrors are mounted on a backplane and the backplane folds at 4 hinge lines – segments have mm gap!

Segment radii of curvature tolerance

Tolerance on the radius

Sparse apertures

The telescope is a spatial frequency filter

The modulation transfer function (MTF) is related to the autocorrelation of the pupil

Assumes a diffraction-limited system

Sparse Aperture (Difficult in space)

Line apertures require rotation to fill out the ξ, η plane

Pointing and tracking issue coupled with optical trombones to adjust OPD

Sparse aperture telescope (pupils)

 $T(\xi,\eta) = circ[2a\xi,2a\eta] + circ[2a\xi,2a(\eta-4a)]$

The modulation transfer function (MTF) is the autocorrelation of the pupil

Since they do not overlap the pupil is said to be minimally redundant

PSF for Sparse apertures

 $I_{i}(x,y) = \left| \mathcal{F} \left\{ t_{2}(\xi,\eta) \right\} \right| \otimes I_{O}(x,y)$

interferometer aperture

- What kind of aperture are you going to build?
- Angular resolution is more important than power at the image plane

Fizeau Interferometer

He took Young's **WHITE-LIGHT** double slit experiment and used its principles for astronomy

Michelson's WHITE LIGHT Interferometer 1920

Michelson's Interferometer @ 100-inch

Interferometer

- ESO very large telescope interferometer (VLTI)
 – Paranal Chile
- Navy prototype optical interferometer (NPOI) – Flagstaff, AZ
- Center for high angle resolution astronomy (CHARA)

Era of ELTs (2016 -)

A new generation of 20-42m ELTs is being designed:

 Thirty Meter Telescope (www.tmt.org) - Caltech, UC, Canada + poss. Japan - 30m f/1 primary via 492 X
 1.4m segments - \$80M design underway (2004-2009) - \$760M construction cost (FY2006) - major
 fund-raising already underway

 Giant Magellan Telescope (www.gmto.org) Carnegie, Harvard, Arizona, Texas, Australia + others - 21m f/0.7 primary via 6 8.2m segments
 - funds for \$50M design study being raised

European ELT (<u>www.eso.org/projects/e-elt</u>) 42m f/1 primary with 900+ 1.4m segments - 5 mirror design - 57M Euros design underway (2007-)

How will these AO-designed ELTs synergy and space astronomy?

affect ground-space

How do we build a large, complicated system?

- Create a work-breakdown structure (WBS)
- Assign personnel to jobs in the WBS you know they can do – or accept responsibility to do
- Create a work plan with schedule, cost and performance
 - Develop a list of tasks that need to be done
 - Negotiate with your team who is going to do which task
 - Ask each one how long it will take them to do their tasks and what the cost is

What is a work break down structure?

- Identifies all tasks required
- Presents tasks in a format aligned with doing the work

- talent, skill level and software & equipment

- Provides a structure for the schedule
- Every WBS is different because no two telescopes, instruments, staffing and facilities are the same.
- Create a WBS to enable you to manage success of the project/task

Mission development

- Create ideas for new missions to make new high priority measurements
- Develop justification for the mission
 - Performance, schedule, cost

Where do we start?

- Develop system requirements
- Divide the system up into manageable subsystems
 - Work break-down structure
- One person's subsystem is another person's system.

Example WBS

Each box is assigned a leader & given a \$\$ budget to accomplish work

Tasks accept work from others, provide additional work and then makes deliveries of his product

Project Milestones

- 1. Mission concept review (MCR)
 - Science clearly stated measurement concept
- 2. System definition review (SDR)
- 3. Preliminary design review (PDR)
 - Assembly drawings
- 4. Critical design review (CDR)
 - Detail design complete ready to "cut metal (glass)"
- 5. Pre-ship readiness review

Next time Examples of Technology

- Adaptive mirror 2048 x 2048 with 10 micron stroke running at 500Hz
- 2048 x 2048 back ground limited array detectors with 10 micron pixels sensitive at 5 micron wavelength
- Laser guide star adaptive optics
 - Speed
 - Stable performance
- Blacks at 50 microns wavelength

Next time Technology

- With ~100 engineers each charging \$8K per month a project cannot stop and wait for technology to be developed.
- If the technology to design, build, integrate, align, test and calibrate the optical system is not "off the shelf" then a technology development program is needed to make the technology "ready for flight" & the project is not started.
- Communicate the readiness of your technology using the <u>technology readiness level scale (TRL)</u>
- TRL communicates technical maturity to the nonexpert (often the funding source)

REVIEW TODAY Thursday, January 24, 2013

- Telescope system architectures
 - Filled, segmented, sparse, interferometers
- The NASA process
- Overview of large ground based telescopes
- Requirements development
 - Science measurements, technology risk map science into realized engineering

Tuesday January 29, 2013

- Technology development
 - Mission specific
 - Science measurement enabling
- Your design of space science telescopes —In addition to optics what do we worry about:
 - Radiation, electrostatics, thermal, launch vibration, pointing & control, scattered light (coronagraphs), cosmic rays, south Atlantic anomaly, optical contamination
- Science in the noise
- The *DECADE* report

