Advanced Near-Earth Object (NEO) Tracking System (ANTS)

Astronomical Optics Team 2 Spring 2013

Outline

- Team
- Science
- Systems Engineering
- Optical and Mechanical Engineering
- Conclusions

Team

Nate Wilkerson, Optical and Mechanical Design Ya-Lin Wu, Science and Requirements Mike Butterfield, Systems Engineering

The Science

Near Earth Objects (NEOs)

- Asteroids and comets with perihelion distance less than 1.3 AU
- NECs: comets < 200 yr
- NEAs: majority
- ~ 10000 found
- PHAs (Potentially Hazardous Asteriods:

< 7.5M km & > 150m)

There are ~1400 known PHAs

Types of NEOs

Apollo Semimajor Axis ≥ 1.0 AU Perihelion ≤ 1.02 AU Earth Crossing

<u>Aten</u> Semimajor Axis < 1.0 AU Aphelion ≤ 1.0167 AU Earth Crossing

<u>Amor</u>

Inner Earth Objects (IEOs) Aphelion < 0.983 AU Always inside Earth's orbit (aka Apohele)

Туре	Near-Earth Population
Apollo	62% of known asteroids
Aten	6% of known asteroids
Amor	32% of known asteroids
IEO	6 known asteroids

Figure 1. Near Earth Asteroid Orbit Types

~ 65 Myr ~10 km: > 75% species gone 1908 ~50 m: 2000 km^2 forest gone 2013 ~15 m: 1500 injured

Type of Event	Diameter of Impact Object	Impact Energy(MT)	Average Impact Interval (years)
High altitude break-up	< 50 m	<5	1 - 50
Tunguska-like event	> 50 m	>5	250 - 500
Regional event	> 140 m	~150	5,000
Large sub-global event	> 300 m	~2,000	25,000
Low global effect	> 600 m	~30,000	70,000
Medium global effect	> 1 km	>100K	1 million
High global effect	> 5 km	>10M	6 million
Extinction-class Event	> 10 km	>100M	100 million

Number of NEOs

Figure 2. Frequency of NEOs by Size, Impact Energy, and Magnitude

Near-Earth Asteroids Total Discovered per Size Bin Total Discovered Estimated Diameter (m) 15 January 2012 Alan B. Chamberlin (JPL)

Where are We?

- 1. We found ~ 10000 NEOs
- 2. >90% of >1 km NEOs are detected!
- 3. No more extinctions
- 4. There are millions of small objects...
- 5. Congress: find >90% >140m NEOs ASAP

But a <100m NEO can destroy a city

We hope to detect > 30m NEOs

Strategy

Table 8. Ground-based Survey Performance

		140 meter PHO Completion		
Survey Systems	Start	by end of 2020	10 years	Year for 90%
Spaceguard	1998	14%	8%	>2030
PS4 (shared)	2010	72%	69%	>2030
PS4 (dedicated)	2013	72%	77%	>2030
PS8 (dedicated)	2014	74%	81%	>2030
PS16 (dedicated)	2014	77%	83%	2029
LSST (shared)	2014	75%	81%	>2030
LSST (dedicated)	2015	85%	90%	2024

Table 9. Space-based Survey Performance

		140 meter PHO Completion		
Survey Systems*	Start	by end of 2020*	10 years	Year 90%
0.5m IR @ L1	2013	85%	88%	2024
1.0m IR @ L1	2014	86%	91%	2022
0.5m IR in Venus-like	2013	89%	93%	2021
1.0m IR in Venus-like	2014	92%	95%	2020
1.0m VIS in Venus-like	2014	82%	88%	2025
2.0m VIS in Venus-like	2016	87%	94%	2022

We propose a 1.5m IR space telescope in Venus-like orbit

-TAN

ġ

- Why IR in space?
- 1. stars: ~ 1 um; NEOs: 5~15 um
- 2. less confusion
- 3. shorter exposure but higher SN ratio than visible
- 4. IR best observed in space
- 5. larger PSF; less trailing loss

- Why Venus-like orbit?
- 1. prevent seeing the back of NEOs
- 2. higher detection efficiency

- Where to search?
- 1. Ecliptic
- 2. close to earth: isotropically distributed
- 3. whole sky survey
- 4. away from the sun

How Fast & How Bright?

- Assume ~ 30 km/s & 1 AU distance:
 ~ 2.5" in 1 min or ~ 1 degree per day
 Revisit every 2 ~ 3 days
- Assume 10um, 200K, 1AU, 30m NEO, emissivity 1, 1.5m telescope, bandpass 5um, detector efficiency = 50%: 1.7 photon/sec
- Assume 30 sec & readout noise 30e: S/N = 1.7*30/sqrt(1.7*30+30) = 5.7
 Detectable!

Conclusion: a 1.5m IR telescope in Venuslike orbit can detect 30m NEOs!

Systems Engineering

Survey of Related Projects

Projects intended to contribute to the NEO tracking problem were surveyed

- Some dedicated projects exist while others are multi mission
 - Dedicated projects solve the problem much faster than shared systems

Projects

- Multi-mission Ground Telescopes
 - PanStaars Telescope
 - LSST
- IR Heritage and/or Large Aperture Space Telescopes
 - Kepler
 - Spitzer
 - Hubble
 - Hershel
 - Joint Dark Energy Mission (JDEM)
 - Wide Field Infrared Explorer (1999) -Failed on Launch
 - Wide-field Infrared Survey Explorer (WISE)

- Wide Field Infrared Survey Telescope WFIRST - NASA Proposed System
 - 1.5m IR Telescope 144 megapixel HgCdTe FPA (200 milliarcsec IFOV)
- Dedicated NEO Detection Projects
 - Space-based
 - B612 Foundation (Sentinel) -Private
 - Near Earth Object Surveillance Sat (NEOSSat) - Canada
 - Ground-based
 - Asteroid Terrestrial-impact Last Alert System Project (ATLAS)
- Asteroid Mining
 - Planetary Resources
 - Deep Space Industries (CubeSats)

B612 Sentinel Project

- B612 foundation intends to privately fund a \$400M effort to field a NEOSat style mission
 - Space-based IR survey
 - 0.5 m aperture
 - launched 2017~2018
 - discovered ~ 500000 NEAs in 6.5 yrs
 - > 90% > 140m cataloged
 - many < 50m detected
 - Supplements LSST
 - Little use below 140m
- Venus-like orbit (0.7AU)
 - typical engagement range is <0.8 AU for NEOs
- 6.5 yr 165 degree^2 per hour
 - \circ 11 degree² FOV = 4 second integration time per frame
- 24 million pixel HgCdTe sensor cooled to 40K using Sterling coolers
 - Provides long mission lifetime over helium
- Reverse engineering of Sentinel was performed by the ANTS team for comparison

"NEOStar" Concept

Kepler

Systems Engineering

Objective

- Increase sensitivity while completing the survey in a reasonable amount of time
- We set an initial goal of an order of magnitude smaller than the congressional mandate
 - Congress: 90% PH NEOs >140 m
 - ANTS: 90% of PH NEOs > 14 m
 - This is nearly impossible to meet with a 1.5 m aperture
- Design for reasonable survey time and higher sensitivity than existing concepts
 - Larger aperture and FOV than Sentinel

Approach

- Develop a large-aperture space-based Wide FOV observatory optimized for detection of potentially hazardous NEOs
- Surveys of heritage sensors show that a >11 deg² FOV is difficult to scale for a few reasons
 - WFOV becomes harder at larger apertures due to increasing focal length and thereby increasing detector size requirements
 - At 1.5 m an 18cmx18cm focal plane is already at the limit of current technology for both detectors and cooling
- We chose the 1.5m as an upper limit of current technology for WFOV IR space systems
 - Designed around this upper-limit aperture
 - Wide FOV: > 11 deg² as an initial requirement
 - Limited by detector array sizes

Survey Strategy and Orbit Determination

- Orbit determination requires "long" tracks
 - NASA reports that several (2 to 5) tracks over 3 days will be sufficient for 100 year orbit determinations
 - 3 days equates to nearly 1% of Earth's orbit
- Correlation of tracks is vital
 - It is not useful to see (and revisit) objects if those objects are not identifiable as the same object
 - Multiple tracks of the same object aid in correlation
- Our survey will look at ~7200 deg^2 per day
 - Just under twice the coverage of Sentinel (165 deg²/hour = 3960 deg²/day)
 - Provides more revisits than Sentinel
 - This allows better chance of object correlation
 - Requires a 6x6 degree FOV telescope
 - Limit of what is possible using current technology and a 1.5 m aperture
 - Provides 220s of integration time per deg² per day
 - Allows for a simple "blinking" + thresholding algorithm

Background and Sensor Considerations

- We have chosen a HgCdTe sensor
 - Bandpass may be tuned from NIR to beyond 16 microns though changing the mix
 - Flown on dozens of IR telescope missions
 - Well understood noise characteristics
 - Readout and nonuniformity noises are the largest contributors from the sensor
 - We have selected a Teledyne ROIC with a custom 5-10 micron FPA
 - Potential to extend band to 5-12 or even out to 16 microns with the same ROIC
 - Nonuniformity increases as wavelength increases!
 - Further study required to determine optimal band
 - Must trade NUC noise with increasing signal
 - Heritage equipment is "buttable" many arrays can be used in a variety of configurations to increase effective sensor size
 - Available in up to 4k by 4k 10-15 micron pitch
 - 144MP possible using existing technology!
- Background noise sources
 - Space: ~4K
 - Sensor, Optics, and Dewar: Stirling Cooler: 40K
 - Optics: cooled 40K
 - Zodiacal Background: IR is the largest single noise contribution
 - Stars
 - Low emission in the 5-10 micron band
- We modeled a short integration time and sensor noise limited system

First-order Zodiacal Background

- Caused by dust particles between 10 microns and 0.3 mm
- Causes 60% of the total light on moonless nights
 - Brian May (Lead Guitarist of Queen) wrote his Ph.D. Thesis on Radial Velocities in the Zodiacal Dust Cloud
- MagV of the zodiacal light at Earth is ~23.3 mag/arcsec^2 and is brighter near the ecliptic
 - Flux of about 6.3 photons/s/arcsec^2/m^2/micron
- IR (Leinert, 1998) is ~10^-7 W/m^2/sr/micron at earth
 - 5 micron bandpass provides ~5*10^-7 W/m^2/sr
- Steady state object temperature at 1AU is 280K and at 0.7 AU is 330K
 - At 0.7AU this represents a 2.7X increase in the IR Zodiacal Light level
 - $\circ~$ 5-10 micron passband at 0.7 AU is then ~1.4x10^-6 W/m^2/sr
- This represents the largest contribution to the background

Probability of Detection (and False Alarm Rate)

- To completely solve the problem, a detector must be characterized based on a probability of detection PD analysis
 - The PD must be maximized while the probability of false alarm PFA is kept at a specified level
 - System comparisons are performed using Reciever Operating Characteristics (ROC) curves
 - Time did not permit such an analysis but this trade should be performed prior to PDR
- The result of a PD/PFA study is a required SNR for a specific detection probability
 - Typical detection is specified between an SNR of 5 and 9
 - Reverse engineering of Sentinel with our model gives an SNR of 11 for a 140 m object
 - This represents a high PD, which makes sense for a high chance of multiple detections
- Our threshold SNR is ~11

SNR Calculations

• Simple SNR model using

 $SNR = \frac{Signal}{\sqrt{Signal + < Background > + < Detector Noise >}}$

- Assuming that detector noise dominates for short integration times
 - Detection noise
 - Our Teledyne system has ~15e- of read noise
 - Assuming ~15e- of nonuniformity, we can make SNR estimates using a ~30edetector noise
 - Long integration times will see optics and other backgrounds dominate
 - This can be improved through incorporation of actual dark current, ROIC readout noise, real nonuniformity, etc.
 - Not sufficient time to compare sensors and make a final selection
 - Detailed detector modeling must be performed as a study prior to PDR
 - These assumptions provide SNR of 11 for the Sentinel 0.5m 140m object detection mission
 - Good agreement with Sentinel reverse engineering reasonable probability of detection
 - Similar integration times for Sentinel mean that our noise assumptions are OK
 - Moving forward using these assumptions is reasonable

SNR Calculations - Continued

- Taking a 1.5 m telescope
 - 4 mirror design for WFOV (FOV = 6 deg = $36 deg^2$)
 - 98% reflective (dirty space optics!)
 - WFOV obscuration is high ~30% of area assumed
 - QE for detector ~80%
 - Overall a reasonable assumption is ~50% of photons are captured
- The table below shows the SNR for .5, 1, and 1.5 m apertures for 30, 80, and 140 m objects with a temperature of 200 K
 - For our purposes "detection" means catalogable detection (high PD)
 - To get to our original goal of 14 m, an SNR of 11 is achieved for a ~5 m aperture
 - The reasonably detectable NEO size for a 1.5 m telescope is 50 m diameter

Aperture	SNR 140 m	SNR 80 m	SNR 50 m	SNR 30 m
0.5	11	5.4	2.7	1.1
1	23	13	7.3	3.6
1.5	36	20	12	6.4

Not Detected
Threshold Detection
Detection

Quick Requirements List

- Telescope and Sensor
 - Aperture diameter: 1.5 m
 - Optics cooled to 40 K
 - FOV: 6 degrees
 - 3 or 4 mirror design could permit this FOV
 - Detector: 144 MP, HgCdTe, Stirling Cooled to 40K, 15 micron pixels
 - 0
- Satellite Bus
 - Processing for "blink" detection of 144MP array
 - FPGA solution could perfrom simple blinking and thresholding
 - Downlink capable of sending all detections to Earth for processing
 - Rate of detections has not yet been calculated
 - Power for cooling and data processing are the drivers
- Launch Vehicle
 - Launch to 0.7 AU Heliocentric Orbit
- Co-boresighted Optical for Star Tracking

Optical and Mechanical Engineering

Optical Design

• Trade Study on two designs

- Re-imaged Cassegrain
 - Narrower FOV
 - Compact in length
 - Optimized for chromatic aberration
- Three Mirror Anastigmat
 - Wider FOV
 - Lightweight construction
 - Optimized for chromatic aberration, coma, and astigmatism

Possible Designs

Two Mirror Cassegrain

- 1.5m Aperture
- +/- 1.0 deg FOV
- Parabolic Mirrors
- F/8

Three Mirror Anastigmat

- 1.5m Aperture
- +/- 2.0 deg FOV
- Parabolic Mirrors
- F/1.3

Other (Unconventional) Designs

Four Mirror Configuration

- 1.5m Aperture
- +/- 5 deg FOV
- Parabolic Mirrors
- F/1.16

Two Focal Planes (On/Off Axis)

- 1.5m Aperture
- +/- 10 deg FOV
- Parabolic Mirrors
- F/1.16

We chose Three Mirror Anastigmat

- Meets our requirements:
 - \circ Wide FOV (+/- 10 deg)
 - Wide spectral range (5um to 15um)
- Nondeterministic Requirements:
 - Four x 100Mpixel Detectors
 - 2 arcsec IFOV
 - 25 micrometer pixel size
- Derived Requirements:
 - 4kWhrs of electrical supply
 - +/- 30deg Field of Regard
 - F/5 or better

Substrate Material Trady Study

Material:	Mass Density: [g/cm^3]	Young's Modulus: [Gpa]	Thermal Expansion Coeff: [deg.K^-1]	Thermal Conductivity: [W/ (m*deg.K)]
Pyrex	2.23	65.5	32.5 E-7	1.13
Fused Silica	2.2	73	5.5 E-7	1.38
Silicon Glass	2.5	73	86 E-7	0.75
Astrositall	2.46	90.2	0.6 E-7	1.18
Zerodur	2.53	90.2	0.2 E-7	1.63
BK-7 Glass	2.51	81.5	71 E-7	1.13
Beryllium	1.85	287	11.3 E-6	200
Silicon Carbide	3.21	450	2.77e-6	3.7

Source: <u>http://www.fpi-protostar.com/bgreer/properties.htm</u>

Design Review

- Heat Shield/Solar Panel Array
- 1.5m Primary Mirror
 - Beryllium Substrate for Primary and Secondary
 - Lightweight
 - Holds shape at Cryo temperatures
 - Extremely Young's Modulus minimal material required for rigid structure
 - High thermal conductivity thermal stability of support structures is easier to achieve
 - Passively cooled to 80 K
- Sensor
 - 144 MP HgCdTe Array from Teledyne or Sofradir
 - Stirling Cycle Cooler (40 deg Kelvin) Ball Aerospace
- Body-Pointed Design
 - Inertial Reaction Wheel Pointing
 - Gyroscopes/IMU
 - Star trackers (3) and Sun tracker (1) provide orientation information
- Data Processing
 - SIDECAR ASIC from Teledyne (Low power digitizer 11mW)
 - Single-board computers 144MP x 16bit = ~275MB per image
 - 2 x SpaceMicro IPC5000 (900 MFLOPS sufficient for "blink" processing and thresholding)
 - 1 x SpaceMicro Proton 200k
- Downlink
 - 2m RF Communication Antenna
 - High data-rate optical link