Modern Astronomical Optics - Observing Exoplanets

Summary of existing and future techniques, complementarity

Big questions

(1) How do planets form ?

(2) How many Earth-mass planets in habitable zones ? Around which stars ? Architecture and evolution of planetary systems.

(3) Do conditions suitable for the emergence of life exist on other words ? How frequently ? (Drake equation)

(4) Detect and characterize life on other planets.

As of 2012.... Questions (1) and (2) are directly addressed by current research Questions (3) and (4) will take longer...

Answering these questions requires combination of techniques

Example: Planet mass measurement requires radial velocity or astrometry, chemical composition measurement requires direct detection

Habitable planets

WHERE ?

Habitable zone = range of distance around the host star for which liquid water can exist at the surface of a rocky planet

Techniques covered in this course

Spectroscopy – Radial velocity	
Transit photometry (detection and spectroscopy)	Indirect detection
Microlensing	
Astrometry	
Interferometric techniques	
Coronagraphy	Direct detection
Adaptive Optics (especially Extreme AO)	

Exoplanet observations rely on precision measurements due to large mass ratio (planet signal is always small)

Techniques are highly complementary, probing different planet population/characteristics

Radial velocity – Signal amplitude

Jupiter \rightarrow 12.7 m/s Earth \rightarrow 9 cm/s

51 Peg b : first exoplanet identified around Sun-like star (1995)

Period = 4.23 dayMass sin(i) = 0.47 MJEccentricity = 0

RV ampl = 57 m/s

Transit depth

Transit depth =
$$(R_{planet} / R_{star})^2$$

Earth radius = 6,371 km Jupiter radius = 69,911 km Sun radius = 696,000 km

→ Amplitude = 8e-5 (Earth) → Amplitude = 1% (Jupiter)

Note that transit is deeper at mid-transit (limb darkening)

Kepler 20e: transit depth = 0.008 % (similar to Earth transit depth)

Microlensing geometry : Flux amplification with planet

planet has its own microlensing event

Event is short due to smaller planet mass

Einstein radius is small → source angular size can affect lightcurve

FIG. 1.—Microlensing light curves that show planetary deviations are plotted for mass ratios of $\epsilon = 10^{-4}$ and 10^{-5} and separations of l = 0.8 and 1.3. The main plots are for a stellar radius of $r_s = 0.003$ while the insets show light curves for radii of 0.006, 0.013, and 0.03 as well. (The amplitude of the maximum light curve deviation decreases with increasing r_s .) The dashed curves are the unperturbed single lens light curves, $A_0(t)$. For each of these light curves, the source trajectory is at an angle of $\sin^{-1} 0.6 = 36^{\circ}9$ with respect to the star-planet axis. The impact parameter $u_{\min} = 0.27$ for the l = 0.8 plots and $u_{\min} = 0.32$ for the l = 1.3 plots.

Bennett & Hung Rhie 1996

Astrometric signature of planets

Star AND planet orbit the center of mass of the system

At 10pc, sun diam = 1mas

solar system planets

Imaging exoplanets with interferometers – Earth-like planets

DARWIN mission concept (ESA)

Earh is relatively bright at 10um (peak of thermal emission, ~1e7 contrast instead of ~1e10 in visible light), but diffraction limit of a single telescope at 10um is insufficient

 \rightarrow interferometer well-suited

Terrestrial Planet Finder Interferometer (NASA)

Coronagraphy

Coronagraphs with different throughput, IWA, contrast, discovery space, angular resolution Simulated observations of a Sun/Earth system without wavefront errors Telescope diameter shown on the left

From conventional AO to Extreme-AO

Conventional AO system

Very good conventional AO system (LBT)

Ground-based Extreme-AO system (GPI - simulation)

High contrast imaging systems are specifically designed to produce dark areas in the image Use:

- coronagraphy
- contrast-optimized wavefront control
- calibration / differential imaging

 $6 \ \lambda/D$ Space-based high contrast imaging system (lab)

From observations to planet habitability

Future opportunities

Ground-based facilities:

- arrays of small robotic telescopes (transit, microlensing)
- better instruments on 8-m class telescopes (direct imaging, transit spectroscopy, RV)
- new instruments on extremely large telescopes (ELTs) for direct imaging (Extreme-AO) and RV

Space missions:

- better transit surveys (TESS, PLATO) with more completeness \rightarrow better understanding of exoplanet statistics
- microlensing survey (WFIRST)
- transit spectroscopy (JWST, FINESSE) with highly stable observations
- possible astrometry mission ? \rightarrow measure planet masses
- direct imaging and spectroscopy mission \rightarrow characterization, habitability