Adaptive Optics

Atmospheric turbulence and its effect on image quality

Image quality metrics

Atmospheric turbulence

Wavefront phase

Measuring important turbulence parameters
Wavefront phase error budget



What is Adaptive Optics ?
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Main components of an AO system:

Guide star(s): provides light to
measure wavefront aberrations, can be
natural (star in the sky) or laser (spot
created by laser)

Deformable mirror(s) (+ tip-tilt
mirror): corrects aberrations

Wavefront sensor(s): measures
aberrations

Computer, algorithms: converts
wavefront sensor measurements into
deformable mirror commands



Strength of Turbulence : C 2

Variations in refractive index due to temperature
fluctuations

Refractive index spatial structure function (3D):

D,(p) = <|n(r)-n(r+p)|*> = C2? p?3 (equ 1)
Equation is valid between inner scale (~mm) and outer
scale (few m)

Taylor approximation: turbulence is a frozen wavefront
pushed by the wind (frozen flow)

Between inner and outer scale, turbulence is well
described by this power law.

Refractive index temporal structure function under Taylor
approximation:

D (1) = <|n(r,t)-n(r,t+1)|2> = C2 |vi|??



Atmosph
Turbule

Spatial variations in refractive index —» poor image quality

Turbulence is energy dissipation effect :
Large motions — breaks down into smaller turbulence
cells - friction (heat dissipation) at inner scale



From C ?to wavefront structure function

Wavefront phase spatial structure function (2D):
Dy, (p) = {|¢a (x) = ¢a (x + p)I*),

Can be oabﬁtained by integrating equ 1 over light path:
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Dy, (p) = 6.88 (M) (equ 2)
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With r, = Fried Parameter [unit = m]
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From C 2to wavefront error

Wavefront phase error over a circular aperture of
diameter d:

7 5/3
7 =1.0299 (—)

o

r, = Fried Parameter [unit = m] = diameter of telescope
for which atmospheric wavefront ~ 1 rad

In this “collapsed” treatment of turbulence (what is the
wavefront in a single direction in the sky), turbulence is
fully described by r, and wind speed v

If variation of wavefront over small angles is important,
the turbulence profile becomes important



Atmospheric turbulence,
wavefront variance,
Image quality

D = telescope diameter
o= 1.03 (D/r )"

Seeing = Ar,

Number of speckles = (D/r,)?
D=8m,r,=08m

(0.2 min visible = 0.8 mat 1.6 um)

Kolmogorov turbulence

Wavefront error o is in radian in all equations.

Wavefront variance o2 is additive (no correlation between different
sources), and the wavefront error budget is built by adding o* terms.

Wavefront error (m) = A X a/(2m)

Strehl ratio ~ e
(Marechal approximation, valid for Strehl ratio higher than ~0.3)



Seeing (or its equivalent r ) is the most used metric

to quantify atmospheric turbulence
WITHOUT AO (and with long exposures), this is the only
relevant quantity to describe atmospheric turbulence
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ESO VLT seeing statistics, 1999-2004



(percent)

CuMUL

With AO, isoplanatic angle and coherence time become
iImportant

How quickly does the wavefront change with location on the sky is
quantified by isoplanatic angle
- field of view of corrected image
- how far from science target can the guide star be
Speed at which wavefront changes is quantified by coherence time
- how fast should the AO system run ?
- how faint a guide star can be used ?
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Example: Mauna Kea observatory forecast
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Canada France Hawaii Telescope (CFHT)
weather summary page

DIMM: Differential Image Motion Monitor
MASS: Multiaperture Scintillation Sensor
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Differential Image Motion Monitor (DIMM)

Concept: measure differential motion, for a single star, between images
formed by different subapertures of a single telescope
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RoboDIMM for Isaac Newton group of Telescope (LaPalma, Canary islands, Spain)



Coherence time

Assuming perfect DMs and wavefront knowledge, how does
performance decrease as the correction loop slows down ?

Assuming pure time delay t
G2 = (t/t0)5/3

t, = coherence time “Greenwood time delay”= 0.314 r /v

v =10 m/s
r, = 0.15 m (visible) 0.8 m (K band)

t,=4.71 ms (visible) 25 ms (K band)
Assuming that sampling frequency should be ~ 10x bandwidth

for “diffraction-limited” system (1 rad error in wavefront):
sampling frequency = 400 Hz for K band

for “extreme-AO” system (0.1 rad error):
sampling frequency = 6 kHz for K band



Isoplanatic angle

Atmospheric wavefront not the same for different directions
on the sky

Two equivalent views of the problem:
- Wavefront changes across the field of view (MOAOQO)
- Several layers in the atmosphere need to be corrected (MCAO)

4

If we assume perfect on-axis correction,
and a single turbulent layer at altitude h, e
the variance (sq. radian) is :
o= 1.03 (a/6,)>" h
Where a is the angle to the optical axis,
0, is the isoplanatic angle:

0, = 0.31 (r,/h)

D=8m,r,=0.8m,h=5km —>06,=10"
To go beyond the isoplanatic angle: more DMs needed (but no need
for more actuators per DM).



Amplitude effects, chromaticity

Atmospheric wavefronts (in optical path) are chromatic, and
include amplitude (scintillation)

Several effects:

- Diffraction propagation converts phase into amplitude (scintillation)
- Diffraction propagation is chromatic — scintillation is chromatic

- Refraction index of air is slightly chromatic

- Atmospheric dispersion = light path from source to telescope is

slightly different for different colors (~cm offset beetween red and
blue light at few km altitude)

Amplitude and chromaticity effects << phase corrugations
But can be important in Extreme-AO systems aiming at very high
quality correction



Example Scintillation

2mm / pixel, 1024x1024 pix (~2m x 2m)

lambda = 500nm, Zenith angle = 30 deg, 0.8” seeing at zenith
Site: Mauna Loa observatory (3500m altitude)

phase [radian] amplitude




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

