Modern Astronomical Optics - Observing Exoplanets 2. Spectroscopic detection and characterization

Olivier Guyon - guyon@naoj.org – Jim Burge, Phil Hinz

WEBSITE:

www.naoj.org/staff/guyon

→ Astronomical Optics Course

→ Observing Exoplanets (2012)

Radial velocity – principle Doppler effect

Radial velocity Speed of light (3e8 m/s) $f = (1-V/c) f_0$ emission frequency

Light frequency f = c/ λ Visible light ~ 500 THz

Observed frequency

Radial velocity – principle Orbital motion

 $V_{star} = V_{pl} \times M_{pl}/M_{star}$ [1] With: $V_{star} = star velocity$ $V_{pl} = planet velocity$ $M_{pl} = planet mass$ $M_{star} = star mass$

Observed quantity = V_{star} sin(i) With i=inclination

The Radial Velocity Method

ass release and may be used by the press on the condition that the sour

Press Photo 22e/07 (25 April 2007)

 $R^3 = P^2 GM_{star}/(4 \pi^2)$ [2] R = star to planet distance (semi-major axis)

P = orbital period

Kepler's third law:

G = gravitational constant

Radial velocity observation = <u>orbital period P</u> and $V_{star} sin(i)$ P \rightarrow semi-major axis R (using equ. [2] and stellar mass) $\rightarrow V_{pl} = 2\pi R/P$ $V_{star} sin(i), V_{pl} \rightarrow M_{pl} sin(i)$ (using equ. [1] and stellar mass) **Radial velocity = measurement of planet's orbit (except inclination) and M_{pl} sin(i)**

Radial velocity – Signal amplitude

Jupiter \rightarrow 12.7 m/s Earth \rightarrow 9 cm/s

51 Peg b : first exoplanet identified around Sun-like star (1995)

Period = 4.23 dayMass sin(i) = 0.47 MJEccentricity = 0

RV ampl = 57 m/s

Radial velocity – examples

Ups And : planetary system Shows superposition of 3 planets RV signals

Non-circular orbits (GI 876 b & 14 Her)

Exoplanet spectroscopy

Direct imaging spectroscopy: planet light is isolated

Transit spectroscopy: planet + star light. Planet seen in transmission or reflection

Figure on the right shows Earthshine spectra (Woolf & Smith 2001)

