Modern Astronomical Optics

1. Fundamental of Astronomical Imaging Systems

OUTLINE:

A few key fundamental concepts used in this course: Light detection: Photon noise Geometrical optics: Pupil and focal plane, Lagrange invariant Diffraction: Diffraction by an aperture, diffraction limit Spatial sampling

Earth's atmosphere: every ground-based telescope's first optical element Effects for imaging (transmission, emission, distortion and scattering) and quick overview of impact on optical design of telescopes and instruments

Astronomical measurements & important characteristics of astronomical imaging systems: Collecting area and throughput (sensitivity) flux units in astronomy Angular resolution Field of View (FOV) Time domain astronomy Spectral resolution Polarimetric measurement Astrometry

Light detection: Photon noise

Poisson noise

Photon detection of a source of constant flux F. Mean # of photon in a unit dt = F dt. Probability to detect a photon in a unit of time is independent of when last photon was detected \rightarrow photon arrival times follows Poisson distribution Probability of detecting n photon given expected number of detection x (= F dt): f(n,x) = x^n e^{-x}/(n!) x = mean value of f = variance of f

Signal to noise ration (SNR) and measurement uncertainties

SNR is a measure of how good a detection is, and can be converted into probability of detection, degree of confidence

Signal = # of photon detected

Noise (std deviation) = Poisson noise + additional instrumental noises (+ noise(s) due to unknown nature of object observed)

Simplest case (often valid in astronomy): Noise = Poisson noise = $sqrt(N_{nh})$

Most of the time, we assume normal distribution (good approximation of Poisson distribution at high flux)

For example:

Telescope observes source for 5s, and detects 200 photon \rightarrow measured source flux is 40 ph/s with a 3- σ measurement error of 3xsqrt(200)/5 = 8.5ph/s \rightarrow 99.7% probability that actual flux is between 31.5 ph/s and 48.5 ph/s

Geometrical Optics: Lagrange Invariant

 $H = n \overline{u} y - n u \overline{y}$

n = ambient refractive index (= 1 in most cases, unless H is computed inside a lens) y = chief ray height u = chief ray angley = marginal ray height u = marginal ray angle (see next slide for visual representation of these terms)

→ large field of view and large collecting area requires large optics example: 10-m telescope, 1 deg field of view if beam in compressed to 10cm (100x compression), angle = 100 deg → very difficult to design re-imaging optics of sufficiently high quality

\rightarrow small beam = compressed propagation distances, lots of beam walk and diffraction effects at fixed physical distance from pupil

Example: 10-m diameter beam compressed to 10mm (1000x lateral compression) In this beam, lateral compression = 1e6: 10mm along the small beam is 10 km along the 10-m diameter beam Example: afocal telescope (= beam reducer), input diameter D \rightarrow output diameter d In Astronomy, object to be imaged is at infinity

Chief ray (starts at edge of object, crosses center of aperture) PUPIL= where chief ray intersects optical axis = conjugated to aperture stop Marginal ray (starts at center of object, crosses aperture at its edge) FOCAL PLANE = where marginal ray intersects optical axis = conjugated to infinity

a = FOV (D/d)

Compressing the beam by factor x = multiplying angles by factor xNote: The Lagrange invariant can also be seen as conservation of retardation (unit: waves, or m) between one size of the beam and the other: reducing the beam size conserves this retardation, and therefore amplifies angles.

 \rightarrow impossible to build a wide field of view large telescope using small relay optics !!

 \rightarrow large FOV & large diameter telescopes are challenging to build and have very large optics

Lagrange invariant $\rightarrow d1^2 / z1 = d2^2 / z2$ Reducing beam size by x compresses propagation distances by x² Drawing above provides physical illustration by looking at overlap between beams

Note:

Diffractive propagation equations (Talbot distance) show same beam volume compression effect: Talbot distance goes as f^{-2} , where f is the spatial frequency. If the beam is compressed by x, spatial frequencies are also multiplied by x, and the Talbot distance is divided by x^2

Diffraction by an aperture – telescope diffraction limit

Fresnel diffraction integral:
$$E(x,y,z) = \frac{e^{ikz}}{i\lambda z} \iint E(x',y',0)e^{\frac{ik}{2z}[(x-x')^2+(y-y')^2]}dx'dy'$$

In imaging telescope, focal plane is conjugated to infinity (far field) Fraunhofer is far field approximation of the Fresnel diffraction integral – and can easily be computed as a Fourier transform.

For circular aperture without obstruction : Airy pattern First dark ring is at ~1.22 λ /D Full width at half maximum ~ 1 λ /D The "Diffraction limit" term = 1 λ /D

D=10m, λ =0.55 μ m $\rightarrow \lambda$ /D = 0.011 arcsec

On large telescopes, image angular resolution is limited by atmospheric turbulence on the ground, at about 1 arcsecond

 \rightarrow Adaptive optics required for < arcsecond imaging

Note: In astronomy, we use arcsecond (1/3600 deg) as unit for small angles

Spatial sampling of images

Astronomical imaging systems use arrays of pixels. How many pixels across image to capture signal ?

The Optical Transfer Function of a telescope goes to zero at λ /D: an noiseless image is band limited (telescope acts as a low pass filter in spatial frequencies) \rightarrow Nyquist limit:

2 pixels per resolution element (= λ /D if diffraction limited)

Sampling and physical size of pixels defines F/ratio of optical beam onto the detector

Example: Diffraction-limited telescope with Adaptive Optics D=5m, λ =1.0 µm $\rightarrow \lambda$ /D = 0.04 arcsec Nyquist limit : 20 mas (0.02 arcsec) per pixel

With 20 μm pixels, 1 mas / μm on the detector: 1 mas x f = 1 μm f = 206m \rightarrow f/D = 40

Increasing sampling beyond Nyquist limit doesn't bring new information.

Flux units in optical astronomy

At optical wavelengths, the most common unit is the astronomical magnitude scale. Historically, from 0 (brightest stars in sky) to 6 (faintest stars visible to the eye in night sky).

Large number = faint source !!!

Magnitude scale has since been defined for different colors, and extends beyond visible light to both IR/near-IR and near-UV.

Magnitude scale is logarithmic: 5 magnitudes = 100x flux (1 magn = $100^{1/5}$ ratio = 2.512 ratio in flux)

```
m = -2.5 \log_{10}(F/F_0)
F = F<sub>0</sub> 2.512<sup>-m</sup>
With F<sub>0</sub> given in table below
```

Conversion between Jy and ph.s⁻¹.m⁻². μ m⁻¹: 1 Jy = 1e-26 W.m⁻².Hz⁻¹ (Johnson-Cousins-Glass)

Band	В	V	R	I	J	н	К
effective wavelength (µm)	0.436	0.545	0.638	0.797	1.22	1.63	2.19
zero mag flux (Jy)	4000	3600	3060	2420	1570	1020	636
zero mag flux (ph.s ⁻¹ .m ⁻² .µm ⁻¹)	1.38E11	9.97E10	7.24E10	4.58E10	1.94E10	9.44E9	4.38E9

Flux units in optical astronomy

V magnitudes:

Sun :-26Full moon :-13Brightest star (Sirius) :-1.4Faintest naked eye stars:7Faintest stars imaged by Hubble Space Telescope:30

Magnitude scale also used for surface brightness: magn.arcsec⁻²

Absolute Magnitude

```
Astronomical unit (AU) = Sun-Earth distance = 1.496e7 m
parallax = amplitude of apparent motion of a source on background sky due to Earth's
orbit
parsec (pc) = parallax of one arcsecond = 3.0857e16 m = 3.26156 light year (ly)
Absolute magnitude (M): apparent magnitude an object would have if located 10 pc from
Earth
```

```
If object is at 10pc, M=m

If object is at D<sub>L</sub> pc, apparent flux = (D_L/10)^{-2}

m = M + 5 (\log_{10}(D_L) - 1)

M = m - 5 (\log_{10}(D_L) - 1)
```

Problem #1: How big a telescope does it take to image an Earth-like planet at 10pc (32.6 lyr) in 1hr ?

Assume: detection SNR = 5 0.1 μ m bandpass filter at 0.55 μ m (V band) 50% efficiency no background Sun V band absolute magnitude = 4.83 Earth is 1e10 fainter than Sun

Solution to problem #1

How many photons needed ?

SNR = 5 is reached with 25 photons, for which signal (S) = 25 and noise (N) = sqrt(25) = 5

Zero point of the system as a function of collecting area

According to the table of magnitude zero points, in one hour, a 0.1 μ m wide filter around V band gives for a magnitude zero source :

 $N_0 = 0.1 \ \mu m \ x \ 3600s \ x \ 9.97E10 \ ph.s^{-1}.m^{-2}.\mu m^{-1} = 3.59E13 \ ph.m^{-2}$

With the 50% efficiency, the number gets reduced to $zp = 1.79E13 ph.m^{-2}$

Apparent magnitude of the planet

The apparent magnitude of the star is: $m = M + 5 \times (\log_{10}(D_L)-1) = M = 4.83$ The planet is 25 mag fainter (= 1e-10 flux ratio) $\rightarrow m = 29.83$

Number of photon collected per hour from the planet

N = zp x 2.512^{-m} = 21.0 ph.m⁻²

Telescope diameter required

Collecting area required = $25/45.9 = 1.19 \text{ m}^2$

 \rightarrow telescope diameter required = 1.2 m

(Note: other effects ignored here are the star halo, background, detector noise etc...)

Transmission

Atmosphere is fairly transparent in optical when not cloudy nearIR: windows of transparency exist, main absorber is water vapor → choose right wavelenght bands for observations

Emission: the sky is not fully dark

In visible light: airglow (~100km altitude)

→ optical filtering and/or calibration

In IR: blackbody emission from water vapor

 \rightarrow high altitude, dry and cold sites better

Wavefront distortions

fluctuations in refractive index (temperature, humidity, pressure, water content) introduce wavefront errors

Atmospheric turbulence

typical angular distortion = 1" = diffraction limit of 10cm telescope in visible

→ Adaptive optics can mitigate this issue

Atmospheric refraction

refraction is chromatic: stars turn into spectra at low elevation

→ Can be compensated by atmospheric dispersion compensator

Rayleigh Scattering

Daytime sky too bright for observations Moonlight increases sky brightness in visible light (but near-IR is OK)

 \rightarrow observe in the near-IR / IR during bright time, visible during dark time

Transmission & Emission in near IR

In IR: poor transmission = high thermal emission (sky is glowing)

 \rightarrow IR filters for ground-based observations chosen to match high transmission windows

J, H, Ks, L', and M' filter profiles superposed on the atmospheric transmission at Mauna Kea kindly provided by G. Milone for 1 mm precipitable water vapor and an air mass of 1.0

Tokunaga, Simons & Vacca, 2002

Transmission

Atmosphere is fairly transparent in optical when not cloudy nearIR: windows of transparency exist, main absorber is water vapor

Wavelength

Optical emission : airglow

Emission from OH (red & nearIR), O (visible green line) and O_2 (weak blue light) at ~90km Airglow is time-variable, has structure over wide angles: it is very important for spectroscopy to either optically filter it out or have a good scheme to calibrate it and subtract it from the spectra

Moonless sky background in the optical (V band):

Airglow : $m_v = 22.4 \text{ arcsec}^{-2}$

Zodiacal light : $m_v = 23.3 \text{ arcsec}^{-2}$ (brighter closer to ecliptic)

+ scattered starlight (much smaller)

Total darkest sky background ~ $m_v = 21.9 \text{ arcsec}^{-2}$ (rarely achieved from ground)

Cumulative probability distributions of V-band sky brightness at an arbitrary phase in the solar cycle for three model observation scenarios *Gemini North Telescope*

This image shows bands of airglow :

Credit: D. Duriscoe, C. Duriscoe, R. Pilewski, & L. Pilewski, U.S. NPS Night Sky Program Full resolution image on Astronomy Picture of the Day (APOD), 2009 Aug 27