Fabrication challenges and solutions a. k. a. Design and manufacture of mirrors, and active optics

Buddy Martin
Steward Observatory Mirror Lab

Outline

- What makes a good mirror?
- Modern mirror concepts
 - thin solid mirrors
 - segmented mirrors
 - lightweight mirrors
- Honeycomb mirrors
 - design
 - casting
- Optical manufacture
 - requirements
 - aside on active optics and model fitting
 - fabrication (2/17/11 lecture at Mirror Lab)
 - machining
 - polishing
 - measurement (2/17/11 lecture at Mirror Lab)
 - interferometry
 - null correctors
 - GMT measurements

What makes a good mirror?

- Fundamental requirement is to deliver a "good" wavefront to focal plane in almost all conditions.
 - Hold its shape to a fraction of a wavelength
 - Be smooth to a *small* fraction of a wavelength on small scales
 - Contribute little to local seeing (temperature gradients in air)
- Stiffness against wind: bending stiffness prop. to E t³
 - E = Young's modulus, t = thickness
 - more complicated for lightweight mirror
 - Stiffness of honeycomb mirrors is about right; use this as baseline for comparisons.
- Stiffness against gravity: bending stiffness prop. to E t^2/ρ
 - Again, use honeycomb mirrors as baseline.
- Thermal distortion: displacement = $\alpha \Delta T$ t for "swelling"

curvature =
$$\alpha \Delta T / t$$
 for bending

- α = thermal expansion coefficient, ΔT = temperature variation within mirror
- "Mirror seeing" prop. to T $T_{air} \sim dT_{air}/dt \cdot \tau$
 - dT_{ii}/dt = rate of change of air temperature
 - τ = mirror's thermal time constant ~ c ρ t^2 / k
 - c = specific heat, k = thermal conductivity, t = thickness
 - Becomes a problem for T $T_{air} > \sim 0.3$ K, $\tau > \sim 1$ hr
 - For glass or glass-ceramics, want t < 5 cm
- Bottom line: Mirror should be stiff & light, have low thermal expansion & short thermal time constant.

Optical telescopes

- Hale Telescope at Palomar used first large lightweighted mirror.
- Most powerful telescope for 45 years because of difficulty making a larger mirror that would not distort due to its weight and thermal inertia.

New mirror concepts after 1980

- 3 solutions emerged ~1980:
- Thin, solid mirrors whose shape is controlled by active optics
 - Active optics concept by Ray Wilson and colleagues in Europe
 - Concept:
 - · Replace stiffness by active control of shape
 - Reduces mass and thermal inertia (somewhat) with 175 mm thick mirror
 - Technology:
 - Zerodur glass ceramic and ULE glass, both with near zero expansion coefficient
 - Precise active mirror supports
 - Wavefront sensors similar to those used for adaptive optics
 - ESO VLT (4 x 8.2 m), 2 Gemini telescopes, Subaru telescope

Segmented mirrors

- Developed by Jerry Nelson and colleagues at UC
- Concept:
 - Achieve continuous optical surface by active control of position of small segments.
 - Reduces mass and thermal inertia even more than thin solid mirror (75 mm vs 175 mm)
- Technology
 - Precise segment positioning actuators
 - Precise segment-segment displacement sensors (capacitive)
 - Occasional wavefront measurement of segment phasing
- Used for Keck, Hobby-Eberly, Grantecan, SALT
- To be used for TMT (30 m), ESO ELT (42 m)

Honeycomb mirrors

- Developed by Roger Angel and colleagues at UA
- Concept:
 - Extend Palomar technology to 8 m with more extreme lightweighting
 - Maintain stiffness of traditional mirrors, reducing dependence on active control
 - Achieve very short thermal time constant with thin glass sections, active ventilation
- Technology
 - One-piece spin-casting of honeycomb structure with 80% lightweighting
 - Polishing and measuring very fast mirrors (short focal length, f/1 f/1.25)
- Used for MMT, 2 Magellan telescopes, LBT
- To be used for LSST, GMT 25 m

LBT mirror design

- 1. Borosilicate glass has the lowest expansion coef (3 ppm/K) among materials that can be cast into complex form.
- 2. Facesheet thickness = 28 mm to make τ < 1 hr
- 3. Hex cavity size = 192 mm to limit gravity sag of unsupported facesheet to 7 nm
- 4. Rib thickness = 12 mm contributes little mass while maintaining safety.
- 5. Overall thickness 890 mm to give desired stiffness against wind.
- (1) (4) are common to all SOML mirrors; (5) is typical.

Casting process for GMT mirror: mold assembly

Machine and install 1681 ceramic fiber boxes in silicon carbide tub.

Loading of glass

Glass melting

Ø2/Ø2/94 15:Ø6 Cam: B

UV cameras mounted in the furnace lid monitor the casting.

Heat to 1160°C, spin at 4.9 rpm, hold 4 hours to allow glass to fill mold. Cool rapidly to 900°C then slowly for 3 months, 2.4°C/day through annealing.

11

First GMT mirror blank

Manufacturing: Accuracy requirements

- Telescope optics must be more accurate than best wavefront the atmosphere will deliver, at all spatial scales.
 - Without adaptive optics, telescope optics must not significantly degrade images delivered by the atmosphere.
 - With AO, most of DM stroke should be reserved to correct the atmosphere, not the telescope optics.
- "Seeing" is degradation of images due to index variations and turbulence in atmosphere.
 - Typically 0.5 1.0 arcsecond at an excellent site, exceptionally 0.3 arcsecond.
- Atmosphere induces large WF errors on large spatial scales, small errors on small scales.
- Spectrum of WF errors is described by structure function = mean square difference in WF between points in pupil, as a function of their separation *x*.

Structure function specification

Start with 0.11 arcsecond seeing.

Eliminate tilt across full pupil: tighten on large scales.

Add allowance for 2% scattering loss due to 16 nm rms WFE on small scales.

$$\delta^{2}(x) = \left(\frac{\lambda}{2\pi}\right)^{2} 6.88 \left(\frac{x}{r_{0}}\right)^{\frac{5}{3}} \qquad \theta = 0.98 \frac{\lambda}{r_{0}}$$

Impact of active optics on requirements

- Active optics is active control of alignment (primary and secondary) and shape of primary, based on WF measurements in telescope.
 - Necessary because no 8 m mirror is rigid
 - Built into all modern telescopes
- Active optics is slow (> 1 minute) and corrects the large-scale errors that are least stable.
- Implication for manufacturing:
 - No need to completely eliminate all loworder shape errors, because they will be controlled with active optics at telescope.
 - In fact, no point in it.
- Manufacturing requirement is to control all aberrations within easy range of active-optics correction in telescope.
- When mirror surface error is measured in lab, simulate active-optics correction of low-order components.

GMT mirror support layout

Active optics as a model-fitting problem

- Calculate or measure the effect on the mirror shape of a unit force on each actuator.
 - → 160 influence functions
- Measure current shape error.
- Find linear combination of influence functions that would match current shape error.
- *Data* are measured surface displacements z_i . *Model* is sum of influence functions. Model *parameters* (to be determined) are forces f_i .

Solving $\mathbf{A}f = \mathbf{z}$

- See Numerical Recipes for insightful (but not easy) description of options.
- Generally have more displacements than forces (more data than unknown model parameters).
- No exact solution: want the approximate solution that minimizes sum of squares of residual errors.
- Find it any number of ways, e. g. Matlab "\" operator, *if you know there are no redundant equations*.
 - 2 or more influence functions that are very similar counts as redundancy.
- If there are, solution will blow up because similar influence functions will be combined with large forces so as to nearly cancel.
- In our case there is redundancy because forces are not independent. They satisfy
 - sum of forces = weight of mirror
 - net moment about x = 0
 - net moment about y = 0
- Could fix that by removing 3 influence functions.
- But generally you also want to limit the forces: remove patterns of forces that contribute little to reducing residual error but use lots of force.
- Take care of both issues, and be much better aware of what's going on physically, by solving with singular-value decomposition....

Singular-value decomposition

• From *Recipes*:

$$\begin{pmatrix} \mathbf{A} & \\ \\ \end{pmatrix} = \begin{pmatrix} \mathbf{U} & \\ \\ \end{pmatrix} \cdot \begin{pmatrix} w_1 & \\ & w_2 & \\ & & \cdots & \\ & & w_N \end{pmatrix} \cdot \begin{pmatrix} \mathbf{V}^T & \\ \\ \end{pmatrix}$$

$$(2.6.1)$$

- Interpret these factors in physical terms:
- *U* has same dimensions as *A*. Columns of *U* are displacement vectors that form an orthonormal basis for all displacements that can be achieved with your 160 actuators.
 - Each column is called a *bending mode*.
- V is 160 x 160. Columns of V are force sets that form an orthonormal basis and match up with columns of U: column j of V produces column j of U.
- W is a 160 x 160 diagonal matrix whose elements w_i give magnitudes of displacement.
 - If $f = c_j V_j$ then $z = c_j w_j U_j$
 - Think of w_i as the flexibility of bending mode j; it contains all the scaling information.
- SVD is unique apart from re-ordering of columns of U and V, and corresponding w_i .
- Standard order has w_i decreasing from most flexible to stiffest.

Resolve measured shape error into bending modes

(What does mode 2 look like?)

Solution by SVD

$$\begin{pmatrix} f \end{pmatrix} = \begin{pmatrix} & \mathbf{V} & \end{pmatrix} \cdot \begin{pmatrix} \operatorname{diag}(1/w_j) \end{pmatrix} \cdot \begin{pmatrix} & \mathbf{U}^T & \end{pmatrix} \cdot \begin{pmatrix} \mathbf{z} \end{pmatrix}$$

- From right to left:
 - 1. Take scalar product of measured surface error and each bending mode:
 - Resulting vector tells how much of each bending mode there is (mode coefs b_i from prev slide).
 - 1. Multiply each mode coefficient by stiffness $1/w_i$.
 - Resulting vector tells how much of each force mode.
 - 1. Convert from force modes to actuator forces.
- If there is redundancy, some $w_i = 0$.
 - Corresponding columns of *V* are the force vectors that cause no displacement: the *nullspace* of *A*.
 - Can add an infinite amount without changing mirror shape.
 - Eliminate them by setting those $1/w_i$ to zero.
- Do same for any w_j small enough to give unreasonable forces.
- Go further: Eliminate all the modes that don't affect the shape enough to justify their large forces.

Measured bending modes for LBT primary mirror

Measured bending modes for LBT primary mirror

Comments on model fitting

- You can solve any model fitting problem in the same way.
 - Measure or calculate the influence of each parameter on the data.
 - Think of it as an influence function, or a sensitivity, or a derivative.
 - E. g. fitting functions to data
 - Influence functions are your functions evaluated at the data points.
 - Solution is the coefficients of the functions.
 - Trivial with, e. g., Matlab "\" operator.
- Be aware of redundancies in model.
 - Use SVD if there are any.
- For SVD, units can matter.
 - SVD minimizes the "length" of the solution vector.
 - If model parameters are of different kinds (e. g., primary mirror support forces and secondary mirror displacements), scale them so a unit change in each is equally "painful".
- Avoid huge range of numbers by normalizing data.
- Think of the problem in physical terms, not just as a system of equations.