6 High contrast imaging

6.2 Coronagraphy (part 2)

Types of coronagraphs

- Lyot coronagraph(s)Understanding Lyot coronagraphs with Fourier Transforms
 - Amplitude focal plane mask
 - Phase focal plane mask
 - Pupil apodization
- Pupil apodization
 - Conventional
 - PIAA
 - Pupil apodization and Lyot coronagraphs

Interferometric coronagraphs / nulling interferometers

Lyot Coronagraph was first developed to observe the solar corona

Lyot Coronagraph architecture

Relies on focal plane mask AND pupil mask (Lyot stop) to augment contrast

Why a Lyot pupil mask?

- •Focal plane occulter blocks central part of the image = low spatial frequencies in pupil plane
- •What is left after focal plane mask are high spatial frequencies in pupil plane = light around edges
- •This light can be masked by an undersized pupil plane stop

figure from Lyot project website

Lyot Coronagraph explained by Fourier transforms

Pupil plane complex amplitude

→ focal plane complex amplitude

→ Fourier transform

← Inverse Fourier transform

Coordinates in pupil plane: x,y Coordinates in focal plane: u,v

* denoting convolution (product = convolution in Fourier transform)

Lyot Coronagraph explained by Fourier transforms

```
Entrance pupil of telescope: P_1(x,y)
Focal plane complex amplitude (before focal plane mask): F<sub>1</sub>(u,v)
F_1(u,v) = FT (P_1(x,y))
Focal plane mask complex amplitude transmission: M(u,v)
Focal plane complex amplifude (after focal plane mask): F<sub>2</sub>(u,v)
F_2(u,v) = F_1(u,v) \times M(u,v) = FT(P_1(x,y)) \times M(u,v)
Exit pupil plane:
P_2(x,y) = FT^{-1}(F_2(u,v)) = FT^{-1}(FT(P_1(x,y) \times M(u,v))) = P_1(x,y) * FT^{-1}(M(u,v))
With * denoting convolution
P_3(x,y) = L(x,y) \times P_2(x,y)
P_{x}(x,y) = L(x,y) \times (P_{x}(x,y) * FT^{-1}(M(u,v)))
F_3(u,v) = FT(L(x,y)) * (F_1(u,v) \times M(u,v))
```

Coronagraphy problem: minimize $P_3(x,y)$ for on-axis point source