6 High contrast imaging

6.2 Coronagraphy

Why coronagraphy?
What do coronagraph do, when are they useful?

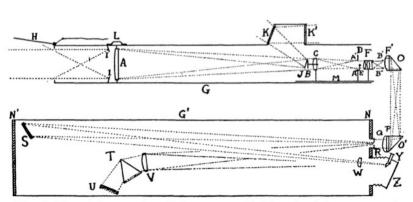
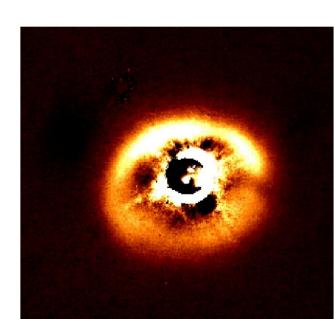
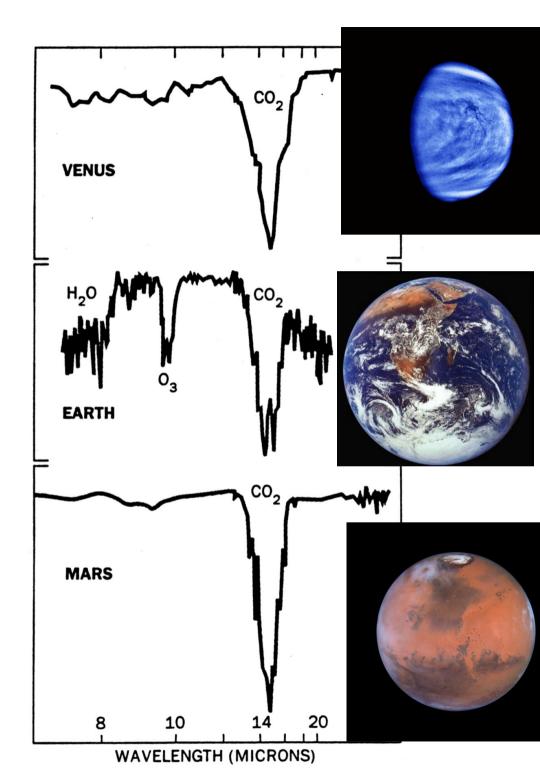



Fig. 4. Plan of the mounting of the coronograph (above) and the spectrograph.



Coronagraphs allow direct imaging

- Orbit
- Atmosphere composition
- Continents vs. Oceans ?
- Rotation period
- Weather patterns
- Planetary environment :
 Planets + dust

Challenges

Contrast

- Visible:
 - 1e10 for Earth/Sun -> space
 - 1e9 for Jupiter/Sun -> space / ELTs ?
 - ~1e8 for close-in planets -> ground ExAO ?
- Near-IR (~1.6 micron)
 - 1e10 for Earth/Sun
 - ~1e12 for Jupiter/Sun
 - ~1e7 for young giant planet / Sun -> Ground ExAO
- Thermal IR (~10 micron)
 - 1e6 for Earth/Sun
 - 1e7 for Jupiter/Sun
- Angular separation (HZs at ~ 0.1 ")
- Exozodiacal light

Why do we need coronagraphs?

Coronagraph can only remove known & static diffraction pattern

BUT:

- static & known diffraction can be removed in the computer
- coronagraphs don't remove speckles due to WF errors

Fundamental reasons:

- (1) Photon Noise
- (2) Coherent amplification between speckles and diffraction pattern

Practical reasons:

- (3) Avoid detector saturation / bleeding
- (4) Limit scattering in optics -> "stop light as soon as you can"

Coherent amplification between speckles and diffraction pattern

Final image = PSF diffraction (Airy) + speckle halo

This equation is true in complex amplitude, not in intensity.

Intensity image will have product term -> speckles are amplified by the PSF diffraction.

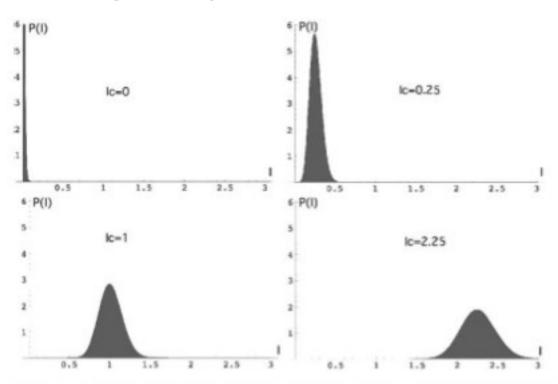
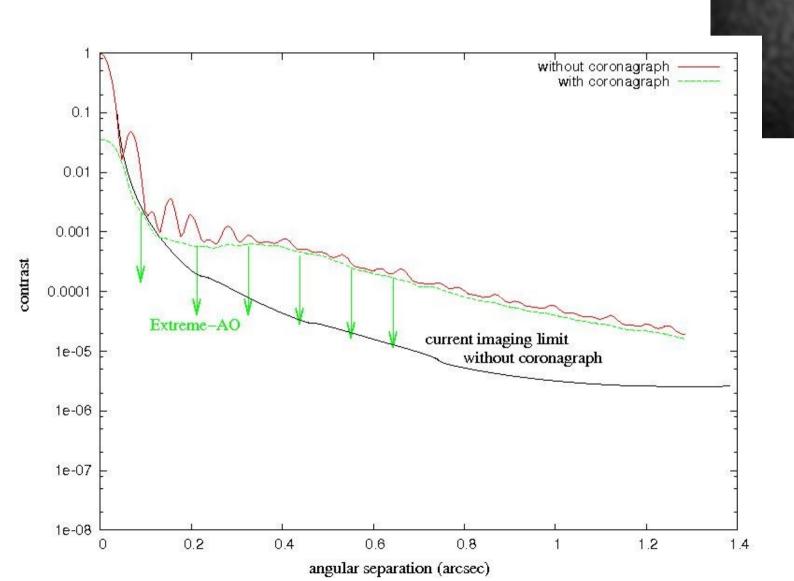


Fig. 3.—PDF of the light intensity at four different constant background intensity levels I_c and a single value of $I_s = 0.1$. High values of I_c correspond to locations near the perfect PSF maxima (rings), and low values of I_c correspond to locations near the zeros of the perfect PSF or far from the core. For $I_c = 0$ we have the pure speckle exponential statistics. The width of the distribution increases with an increase in the level of I_c . This explains speckle pinning; speckle fluctuations are amplified by the coherent addition of the perfect part of the wave.

When do we need coronagraphs?

Coronagraphs serve no purpose if dynamic speckle halo is > diffraction

-> Very important to keep in mind to avoid over-designing the coronagraph, as this usually would mean giving up something (usually throughput)


"Side effects" of coronagraphs:

- (Usually) requires very good pointing. Risk of low order aberrations (for example pointing) creating additional scattered light in the region of interest
- data interpretation & analysis can be challenging (especially at inner working angle)

6

- Astrometry more difficult (solutions exist)

- None of the recent ground-based planet discoveries has been done with coronagraph
- With current Telescopes+AO systems, coronagraphs offer almost no help beyond ~0.3" in H band
- PSF calibration with coronagraphs is more complicated

ExAO systems currently under construction improve contrast with AO + coronagraphy

PSF calibration strategies

"classical" PSF subtraction

Angular Differential Imaging

- works well at large angular separations, where aberrations have large static component
- poor performance close in to the star

Spectral / Polarimetric differential imaging

works great IF source has expected spectral signature or is polarized

Coherent differential imaging

- highly flexible, does not make any assumption about source
- combined wavefront sensing / PSF calibration
- works within control radius of DM