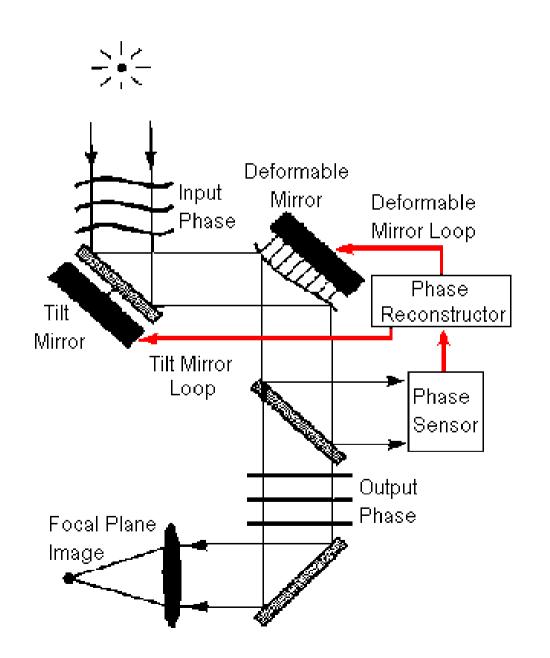
5. Adaptive Optics

5.2. Atmospheric turbulence and its effect on image quality

Image quality metrics
Atmospheric turbulence
Wavefront phase
Measuring important turbulence parameters
Wavefront phase error budget

What is Adaptive Optics?



Main components of an AO system:

Guide star(s): provides light to measure wavefront aberrations, can be natural (star in the sky) or laser (spot created by laser)

Deformable mirror(s) (+ tip-tilt mirror): corrects aberrations

Wavefront sensor(s): measures aberrations

Computer, algorithms: converts wavefront sensor measurements into deformable mirror commands

Strength of Turbulence: C_N²

Refractive index spatial structure function (3D):

$$D_N(\rho) = \langle |n(r)-n(r+\rho)|^2 \rangle = C_N^2 \rho^{2/3}$$
 (equ 1)

Equation is valid between inner scale (~mm) and outer scale (few m)

Taylor approximation: turbulence is a frozen wavefront pushed by the wind (frozen flow)
Between inner and outer scale, turbulence is well described by this power law.

Refractive index temporal structure function under Taylor approximation:

$$D_N(\tau) = \langle |n(r,t)-n(r,t+\tau)|^2 \rangle = C_N^2 |v\tau|^{2/3}$$

Spatial variations in refractive index → poor image quality

Turbulence is energy dissipation effect:

Large motions → breaks down into smaller turbulence cells → friction (heat dissipation) at inner scale

From C_N² to wavefront structure function

Wavefront phase spatial structure function (2D):

$$D_{\phi_a}(\rho) = \langle |\phi_a(\mathbf{r}) - \phi_a(\mathbf{r} + \rho)|^2 \rangle_{\mathbf{r}}$$

Can be obtained by integrating equ 1 over light path:

$$D_{\phi_a} \left(\rho \right) = 6.88 \left(\frac{|\rho|}{r_0} \right)^{5/3} \qquad \text{(equ 2)}$$

With r_0 = Fried Parameter [unit = m]

$$r_0 = \left(16.7\lambda^{-2}(\cos\gamma)^{-1}\int_0^\infty dh C_N^2(h)\right)^{-3/5}$$
 Wavelength Elevation (=0 for Zenith)

From C_N² to wavefront error

Wavefront phase error over a circular aperture of diameter d:

$$\sigma^2 = 1.0299 \left(\frac{d}{r_0}\right)^{5/3}$$

 r_0 = Fried Parameter [unit = m] = diameter of telescope for which atmospheric wavefront ~ 1 rad²

In this "collapsed" treatment of turbulence (what is the wavefront in a single direction in the sky), turbulence is fully described by r_0 and wind speed v

If variation of wavefront over small angles is important, the **turbulence profile** becomes important

Atmospheric turbulence, wavefront variance, Image quality

D = telescope diameter $\sigma^2 = 1.03 \ (D/r_0)^{5/3}$ Seeing = λ/r_0 Number of speckles = $(D/r_0)^2$ D = 8 m, r_0 = 0.8 m (0.2 m in visible = 0.8 m at 1.6 µm)

Kolmogorov turbulence

Wavefront error σ is in radian in all equations.

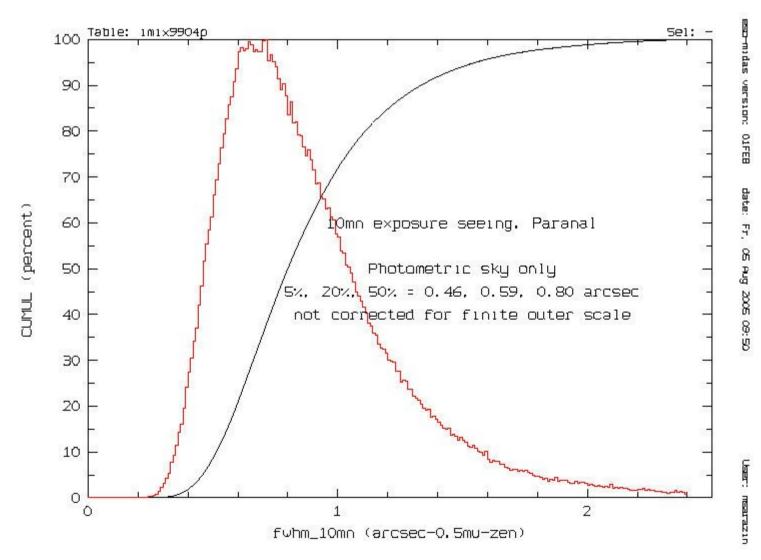
Wavefront variance σ^2 is additive (no correlation between different sources), and the wavefront error budget is built by adding σ^2 terms.

Wavefront error (m) = $\lambda \times \sigma/(2\pi)$

Strehl ratio $\sim e^{-\sigma^2}$ (Marechal approximation, valid for Strehl ratio higher than \sim 0.3)

Seeing (or its equivalent r_0) is the most used metric to quantify atmospheric turbulence

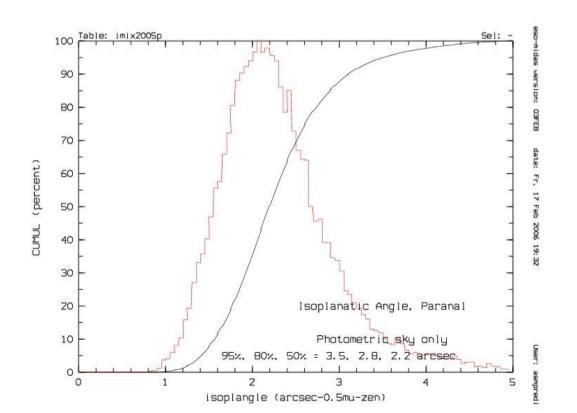
WITHOUT AO (and with long exposures), this is the only relevant quantity to describe atmospheric turbulence

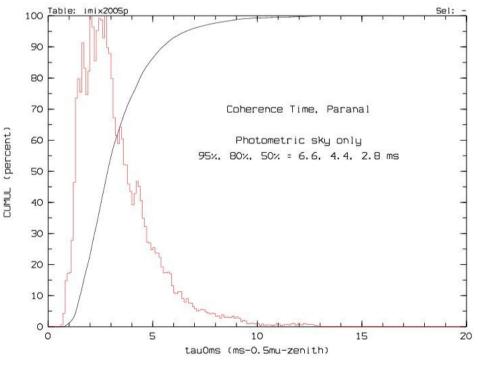


With AO, isoplanatic angle and coherence time become important

How quickly does the wavefront change with location on the sky is quantified by **isoplanatic angle**

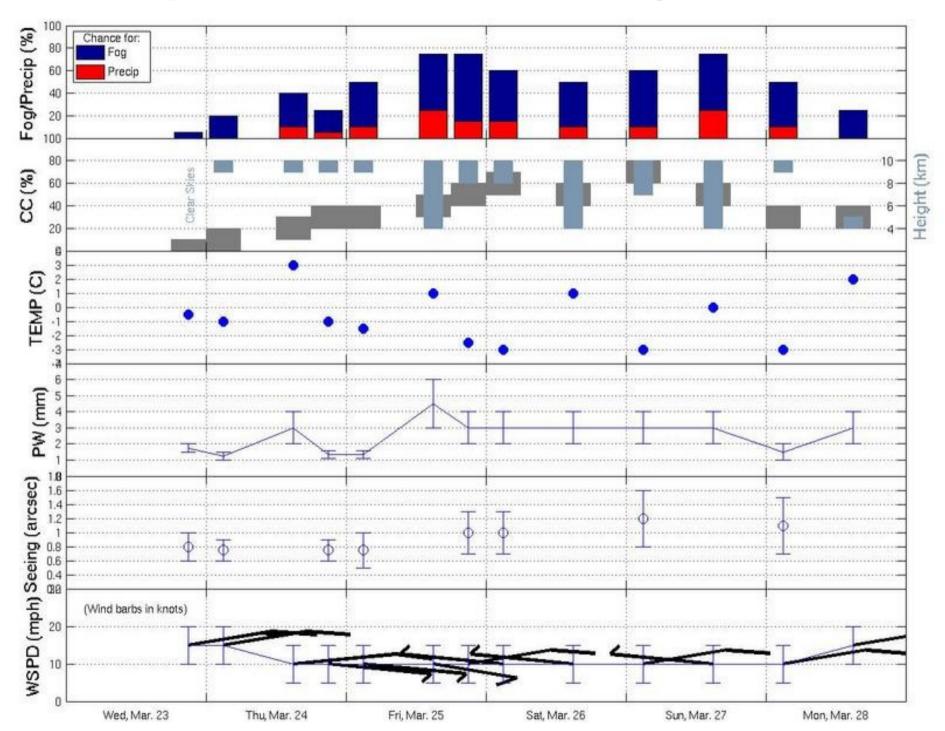
- → field of view of corrected image
- → how far from science target can the guide star be
 Speed at which wavefront changes is quantified by coherence time
 - → how fast should the AO system run?
 - → how faint a guide star can be used?





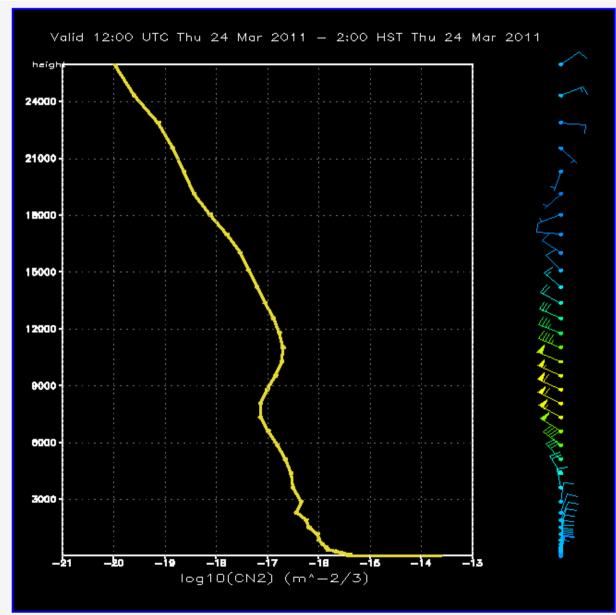
ESO VLT seeing statistics, 2005

Example: Mauna Kea observatory forecast



C_N² profile

Image Size: Large | Small | Thumbnail Previous | Next Forecast Hour Model Image Info: On | Off Return to Model Page Animate

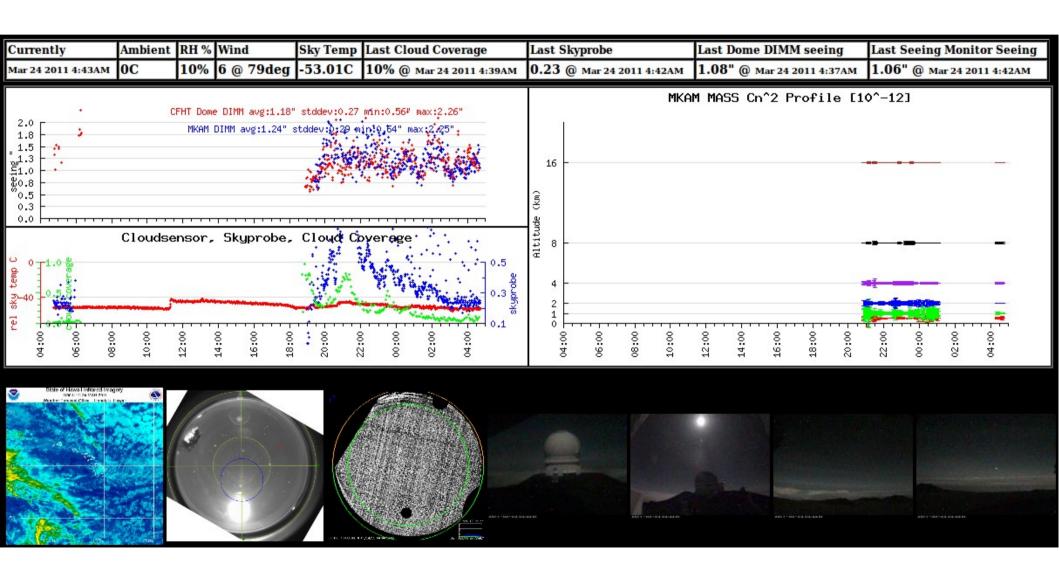


Model	WRF
Region	Hawaii Regional View
Orientation	Vertical Profiles
Variable	Cn ²
Level	Summit
Vaild Time	0200 HST Thu Mar 24 2011
Initialization Time	2011032400
FCST HR	012
Collage	none

Canada France Hawaii Telescope (CFHT) weather summary page

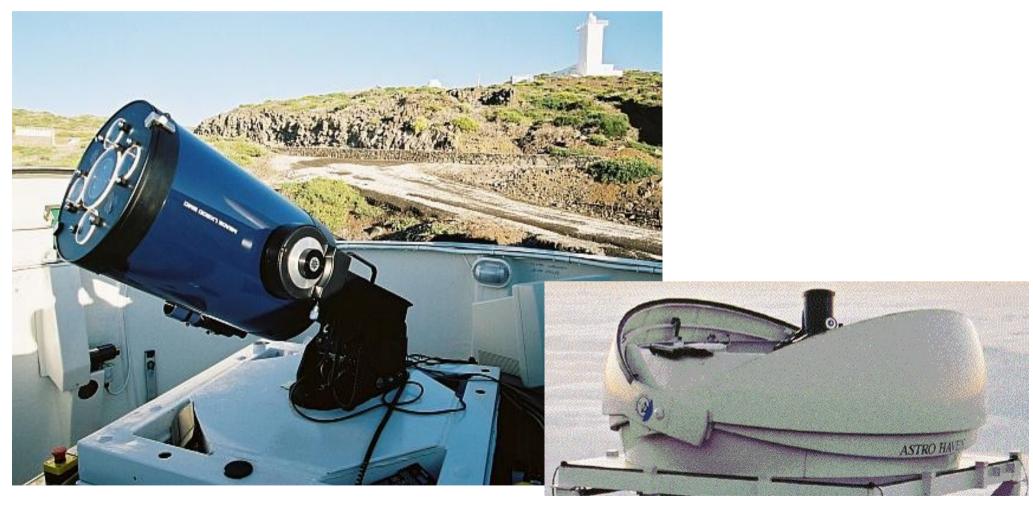
DIMM: Differential Image Motion Monitor

MASS: Multiaperture Scintillation Sensor



Differential Image Motion Monitor (DIMM)

Concept: measure differential motion, for a single star, between images formed by different subapertures of a single telescope



RoboDIMM for Isaac Newton group of Telescope (LaPalma, Canary islands, Spain)

Coherence time

Assuming perfect DMs and wavefront knowledge, how does performance decrease as the correction loop slows down?

```
Assuming pure time delay t
   \sigma^2 = (t/t_0)^{5/3}
   t_0 = coherence time "Greenwood time delay" = 0.314 r_0/v
   v = 10 \text{ m/s}
   r_0 = 0.15 m (visible) 0.8 m (K band)
   t_0 = 4.71 \text{ ms (visible)} 25 ms (K band)
Assuming that sampling frequency should be \sim 10x bandwidth
for "diffraction-limited" system (1 rad error in wavefront):
sampling frequency = 400 \text{ Hz} for K band
for "extreme-AO" system (0.1 rad error):
sampling frequency = 6 \text{ kHz} for K band
```

Isoplanatic angle

Atmospheric wavefront not the same for different directions on the sky

Two equivalent views of the problem:

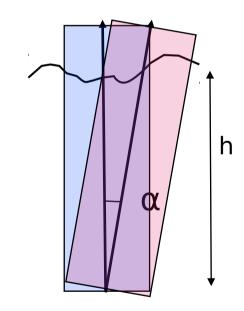
- Wavefront changes across the field of view (MOAO)
- Several layers in the atmosphere need to be corrected (MCAO)

If we assume perfect on-axis correction, and a single turbulent layer at altitude h, the variance (sq. radian) is:

$$\sigma^2 = 1.03 (\alpha/\theta_0)^{5/3}$$

Where α is the angle to the optical axis, θ_0 is the isoplanatic angle:

$$\theta_0 = 0.31 (r_0/h)$$



$$D = 8 \text{ m}, r_0 = 0.8 \text{ m}, h = 5 \text{ km} -> \theta_0 = 10"$$

To go beyond the isoplanatic angle: more DMs needed (but no need for more actuators per DM).