Astronomical Optics

1. Fundamental of Astronomical Imaging Systems

OUTLINE:

A few key fundamental concepts used in this course:

Light detection: Photon noise

Geometrical optics: Pupil and focal plane, Lagrange invariant

Diffraction: Diffraction by an aperture, diffraction limit

Spatial sampling

Earth's atmosphere: every ground-based telescope's first optical element

Effects for imaging (transmission, emission, distortion and scattering) and quick overview of impact on optical design of telescopes and instruments

Astronomical measurements & important characteristics of astronomical imaging systems:

Collecting area and throughput (sensitivity)

flux units in astronomy

Angular resolution

Field of View (FOV)

Time domain astronomy

Spectral resolution

Polarimetric measurement

Astrometry

Light detection: Photon noise

Poisson noise

Photon detection of a source of constant flux F. Mean # of photon in a unit dt = F dt. Probability to detect a photon in a unit of time is independent of when last photon was detected \rightarrow photon arrival times follows Poisson distribution Probability of detecting n photon given expected number of detection x (= F dt): $f(n,x) = x^n e^{-x}/(n!)$ x = mean value of f = variance of f

Signal to noise ration (SNR) and measurement uncertainties

SNR is a measure of how good a detection is, and can be converted into probability of detection, degree of confidence

Signal = # of photon detected

Noise (std deviation) = Poisson noise + additional instrumental noises (+ noise(s) due to unknown nature of object observed)

Simplest case (often valid in astronomy): Noise = Poisson noise = $sqrt(N_{ph})$ Most of the time, we assume normal distribution (good approximation of Poisson distribution at high flux)

For example:

Telescope observes source for 5s, and detects 200 photon \rightarrow measured source flux is 40 ph/s with a 3- σ measurement error of 3xsqrt(200)/5 = 8.5ph/s \rightarrow 99.7% probability that actual flux is between 31.5 ph/s and 48.5 ph/s

Geometrical Optics: Lagrange Invariant

```
H = n\overline{u}y - n\overline{u}y
```

n = ambient refractive index (= 1 in most cases, unless H is computed inside a lens)

y = chief ray height

u = chief ray angle

y = marginal ray height

u = marginal ray angle

(see next slide for visual representation of these terms)

→ large field of view and large collecting area requires large optics

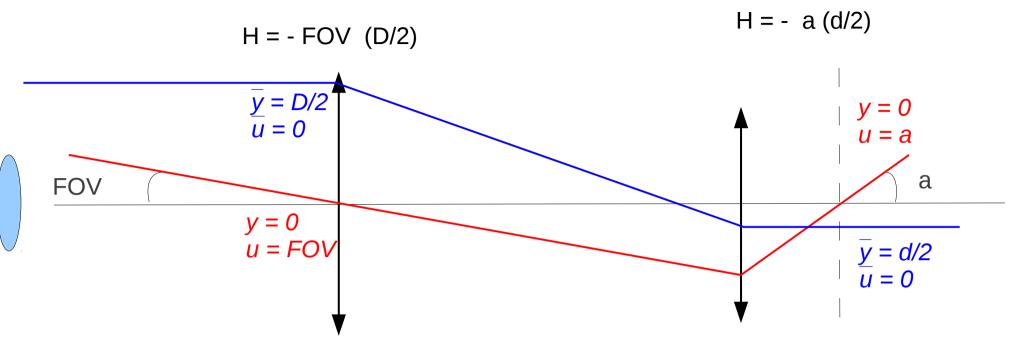
example: 10-m telescope, 1 deg field of view

if beam in compressed to 10cm (100x compression), angle = 100 deg \rightarrow very difficult to design re-imaging optics of sufficiently high quality

 \rightarrow small beam = compressed propagation distances, lots of beam walk and diffraction effects at fixed physical distance from pupil

Example: 10-m diameter beam compressed to 10mm (1000x lateral compression) In this beam, lateral compression = 1e6: 10mm along the small beam is 10 km along the 10-m diameter beam

Example: afocal telescope (= beam reducer), input diameter D → output diameter d



Chief ray (starts at edge of object, crosses center of aperture)
PUPIL= where chief ray intersects optical axis

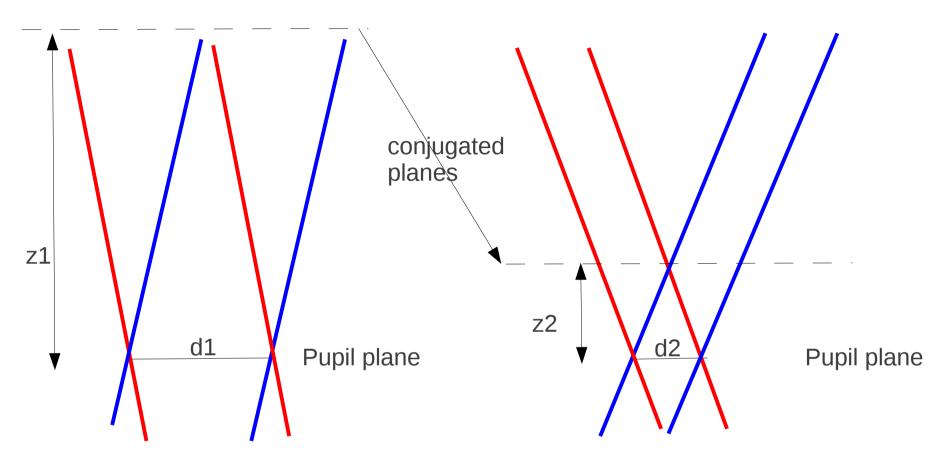
Marginal ray (starts at center of object, crosses aperture at its edge) FOCAL PLANE = where marginal ray intersects optical axis

a = FOV (D/d)

Compressing the beam by factor x = multiplying angles by factor x = multiplying and x = multiplying angles by factor x = multiplying angles by factor x = multiplying and x = multiplying angles by factor x = multiplying and x = multiplying angles by factor x = multiplying and x = multiplying and x = multiplying angles by factor x = multiplying and x = multiplying angles by factor x = multiplying and x = multiplying and x =

- → impossible to build a wide field of view large telescope using small relay optics !!
- → large FOV & large diameter telescopes are challenging to build and have very large optics

Smaller beam : angles get larger



Lagrange invariant \rightarrow d1² / z1 = d2² / z2 Reducing beam size by x compresses propagation distances by x² Drawing above provides physical illustration by looking at overlap between beams

Note:

Diffractive propagation equations (Talbot distance) show same beam volume compression effect: Talbot distance goes as f^{-2} , where f is the spatial frequency. If the beam is compressed by x, spatial frequencies are also multiplied by x, and the Talbot distance is divided by x^2

Diffraction by an aperture – telescope diffraction limit

Fresnel diffraction integral: $E(x,y,z) = \frac{e^{ikz}}{i\lambda z} \iint E(x',y',0) e^{\frac{ik}{2z}[(x-x')^2+(y-y')^2]} dx' dy'$

In imaging telescope, focal plane is conjugated to infinity (far field)

Fraunhofer is far field approximation of the Fresnel diffraction integral – and can easily be

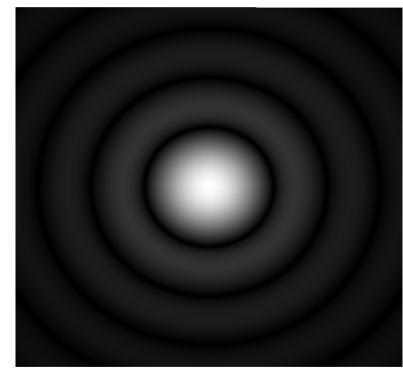
computed as a Fourier transform.

For circular aperture without obstruction : Airy pattern First dark ring is at ~1.22 λ /D Full width at half maximum ~ 1 λ /D The "Diffraction limit" term = 1 λ /D

D=10m, λ =0.55 μ m $\rightarrow \lambda/D$ = 0.011 arcsec

On large telescopes, image angular resolution is limited by atmospheric turbulence on the ground, at about 1 arcsecond

→ Adaptive optics required for < arcsecond imaging</p>



Spatial sampling of images

Astronomical imaging systems use arrays of pixels. How many pixels across image to capture signal?

Nyquist-Shannon sampling theorem:

If a function contains no spatial frequency of period smaller than P, then it is fully specified by its values at interval P/2

The Optical Transfer Function of a telescope goes to zero at λ /D: an noiseless image is band limited (telescope acts as a low pass filter in spatial frequencies)

→ Nyquist limit:

2 pixels per resolution element (= λ /D if diffraction limited)

Sampling and physical size of pixels defines F/ratio of optical beam onto the detector

Example:

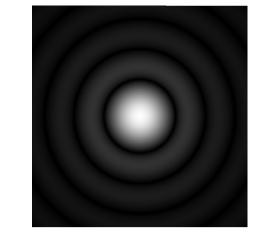
Diffraction-limited telescope with Adaptive Optics

D=5m, λ =1.0 μ m $\rightarrow \lambda/D$ = 0.04 arcsec

Nyquist limit: 20 mas (0.02 arcsec) per pixel

With 20 μ m pixels, 1 mas / μ m on the detector: 1 mas x f = 1 μ m f = 206m \rightarrow f/D = 40

Increasing sampling beyond Nyquist limit doesn't bring new information.



Flux units in optical astronomy

At optical wavelengths, the most common unit is the astronomical magnitude scale. Historically, from 0 (brightest stars in sky) to 6 (faintest stars visible to the eye in night sky). Large number = faint source !!!

Magnitude scale has since been defined for different colors, and extends beyond visible light to both IR/near-IR and near-UV.

Magnitude scale is logarithmic:

5 magnitudes = 100x flux (1 magn = $100^{1/5}$ ratio = 2.512 ratio in flux)

$$m = -2.5 \log_{10}(F/F_0)$$

$$F = F_0 2.512^{-m}$$

With F_0 given in table below

Conversion between Jy and ph.s⁻¹.m⁻².µm⁻¹:

 $1 \text{ Jy} = 1\text{e}-26 \text{ W.m}^{-2}.\text{Hz}^{-1}$

(Johnson-Cousins-Glass)

Band	В	V	R	1	J	Н	K
effective wavelength (µm)	0.436	0.545	0.638	0.797	1.22	1.63	2.19
zero mag flux (Jy)	4000	3600	3060	2420	1570	1020	636
zero mag flux (ph.s ⁻¹ .m ⁻² .µm ⁻¹)	1.38E11	9.97E10	7.24E10	4.58E10	1.94E10	9.44E9	4.38E9

Flux units in optical astronomy

V magnitudes:

Sun: -26
Full moon: -13
Brightest star (Sirius): -1.4
Faintest naked eye stars: 7

Faintest stars imaged by Hubble Space Telescope: 30

Magnitude scale also used for surface brightness: magn.arcsec⁻²

Absolute Magnitude

Astronomical unit (AU) = Sun-Earth distance = 1.496e7 m **parallax** = amplitude of apparent motion of a source on background sky due to Earth's orbit

parsec (pc) = parallax of one arcsecond = 3.0857e16 m = 3.26156 light year (ly)
Absolute magnitude (M): apparent magnitude an object would have if located 10 pc from
Earth

```
If object is at 10pc, M=m

If object is at D_L pc, apparent flux = (D_L/10)^{-2}

m = M + 5 (log_{10}(D_L) - 1)

M = m - 5 (log_{10}(D_L) - 1)
```

Problem #1:

How big a telescope does it take to image a Sun-like star in Andromeda galaxy in 1hr? assume:

detection SNR = 5

0.1 µm bandpass filter at 0.55 µm (V band)

50% efficiency

no background

Andromeda galaxy is at 2.2 Mly

Sun V band absolute magnitude = 4.83

Solution to problem #1

How many photons needed?

SNR = 5 is reached with 25 photons, for which signal (S) = 25 and noise (N) = sqrt(25) = 5

Zero point of the system as a function of collecting area

According to the table of magnitude zero points, in one hour, a 0.1 μ m wide filter around V band gives for a magnitude zero source :

$$N_0 = 0.1 \,\mu\text{m} \times 3600 \text{s} \times 9.97 \text{E} 10 \,\text{ph.s}^{-1} \cdot \text{m}^{-2} \cdot \mu\text{m}^{-1} = 3.59 \text{E} 13 \,\text{ph.m}^{-2}$$

With the 50% efficiency, the number gets reduced to $zp = 1.79E13 \text{ ph.m}^{-2}$

Apparent magnitude of a Sun-like star in Andromeda

The apparent magnitude of the star is:

$$m = M + 5 \times (\log_{10}(D_1)-1)$$

with:

$$M = 4.83$$
 $D_{L} = 2.2E6/3.26 = 6.75E5 pc$
 $\rightarrow m = 28.98$

Number of photon collected per hour from the star

$$N = zp \times 2.512^{-m} = 45.9 ph.m^{-2}$$

Telescope diameter required

Collecting area required = $25/45.9 = 0.545 \text{ m}^2$

→ telescope diameter required = 0.83 m

Transmission

Atmosphere is fairly transparent in optical when not cloudy nearIR: windows of transparency exist, main absorber is water vapor

→ choose right wavelenght bands for observations

Emission: the sky is not fully dark

In visible light: airglow (~100km altitude)

→ optical filtering and/or calibration

In IR: blackbody emission from water vapor

→ high altitude, dry and cold sites better

Wavefront distortions

fluctuations in refractive index (temperature, humidity, pressure, water content) introduce wavefront errors

Atmospheric turbulence

typical angular distortion = 1" = diffraction limit of 10cm telescope in visible

→ Adaptive optics can mitigate this issue

Atmospheric refraction

refraction is chromatic: stars turn into spectra at low elevation

→ Can be compensated by atmospheric dispersion compensator

Rayleigh Scattering

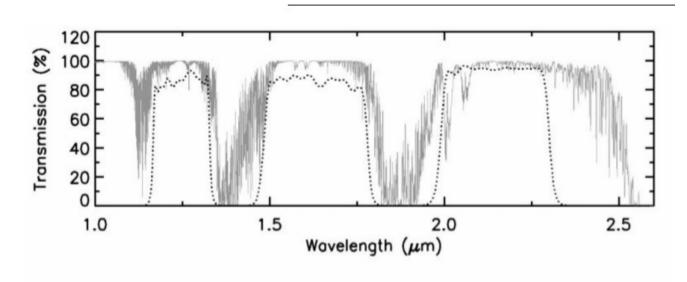
Daytime sky too bright for observations Moonlight increases sky brightness in visible light (but near-IR is OK)

→ observe in the near-IR / IR during bright time, visible during dark time

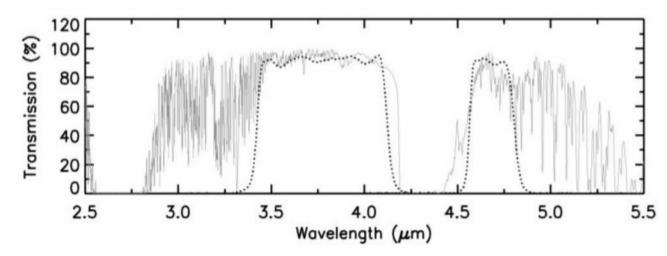
Transmission & Emission in near IR

In IR: poor transmission = high thermal emission (sky is glowing)

→ IR filters for ground-based observations chosen to match high transmission windows



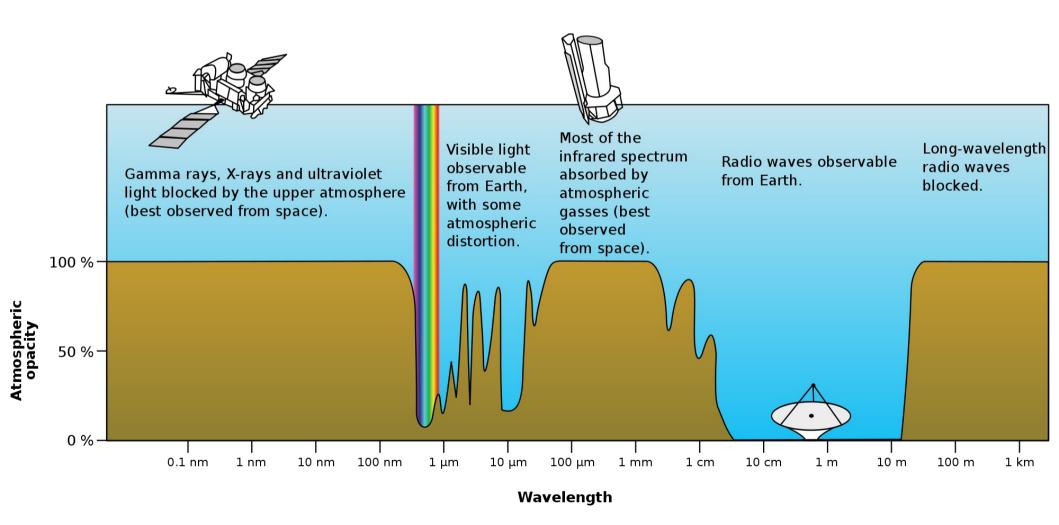
J, H, Ks, L', and M' filter profiles superposed on the atmospheric transmission at Mauna Kea kindly provided by G. Milone for 1 mm precipitable water vapor and an air mass of 1.0



Tokunaga, Simons & Vacca, 2002

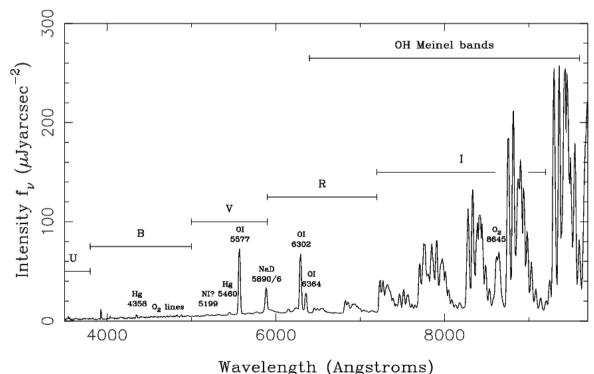
Transmission

Atmosphere is fairly transparent in optical when not cloudy nearIR: windows of transparency exist, main absorber is water vapor



Optical emission: airglow

Emission from OH (red & nearIR), O (visible green line) and O₂ (weak blue light) at ~90km Airglow is time-variable, has structure over wide angles: it is very important for spectroscopy to either optically filter it out or have a good scheme to calibrate it and subtract it from the spectra



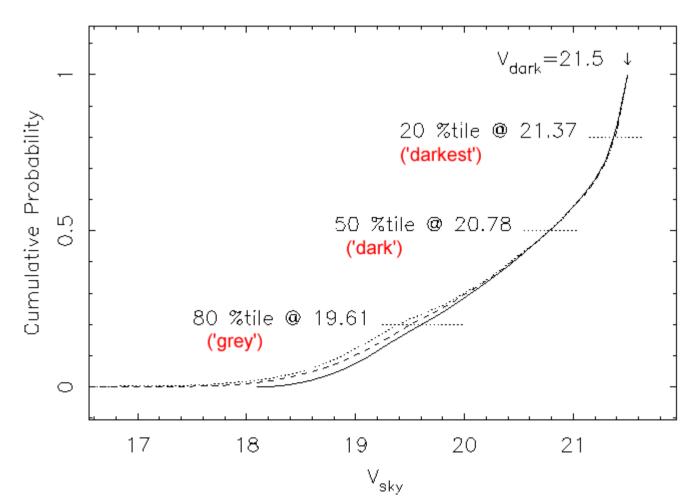
Moonless sky background in the optical (V band):

Airglow : $m_v = 22.4 \text{ arcsec}^{-2}$

Zodiacal light : $m_v = 23.3 \text{ arcsec}^{-2}$ (brighter closer to ecliptic)

+ scattered starlight (much smaller)

Total darkest sky background $\sim m_y = 21.9 \text{ arcsec}^{-2}$ (rarely achieved from ground)



Cumulative probability distributions of V-band sky brightness at an arbitrary phase in the solar cycle for three model observation scenarios

Gemini North Telescope

Airglow movie showing that the sky is not dark at night: http://www.naoj.org/staff/guyon/08astrophoto.web/05timelapse.web/mov_2010-06-06_720x480.avi

This image shows bands of airglow:

Credit: D. Duriscoe, C. Duriscoe, R. Pilewski, & L. Pilewski, U.S. NPS Night Sky Program Full resolution image on Astronomy Picture of the Day (APOD), 2009 Aug 27