

User Guide
Programming instructions for Models EZHR17EN,

EZHR23ENHC, and EZ4AXIS

Command Set document A50

Manual revision 1.0
May 2, 2011

Important Notices

Life and Safety Policy

AllMotion, Inc. products are not authorized for use as critical
components in life support systems for surgical implant into the body, or
other applications intended to support or sustain life or any other
applications whereby a failure of the AllMotion, Inc. product could
create a situation where personal injury, death or damage to persons,
systems, data or business may occur.

AllMotion, Inc.
30097 Ahern Avenue
Union City, CA 94587
USA

Tel: 408.460.1345
Fax: 408.358.4781

Technical Support: 408.460.1345
Sales: 510.471.4000

Website: www.allmotion.com

Copyright © 2008, 2009, 2010, 2011 AllMotion, Inc. All rights reserved.

The following are trademarks of AllMotion, Inc.: AllMotion®,
EZStepper ®, EZServo®, EZBLDC ™, EasyBLDC ™. Other names,
brands, and trademarks are the property of others.

AllMotion, Inc. assumes no responsibility or liability for information
contained in this document. AllMotion, Inc. reserves the right to make
corrections, modifications, enhancements, improvements, and other
changes to its products and services at any time and to discontinue any
product or services without notice. The information contained herein is
believed to be accurate and reliable at the time of printing.

Page 2 of 63

http://www.allmotion.com/

 Table of Contents

Table of Contents

Important Notices ..2
1. Introduction..7

Overview..7
Command Syntax ..7

2. Command Set..8
3. Single-Axis Programming Examples ...17

Example #1 (A move to absolute position) ...17
Example #2 (Move loop with waits) ..17
Example #3 (Program storage and recall) ..18
Example #4 (Set current, wait for Switch 2 closure, home to opto)..18
Example #5 (Nested loop example)..19
Example #6 (Skip/Branch instruction)...20
Example #7 (Monitor four switches and execute four different programs depending on
which switch input is pushed) ...21
Example #8 (Move 1000 steps forward on rising edge of Switch2)21

4. Multiple-Axis Coordinated Motion Programming Examples ..22
Introduction..22
Addressing Individual Motors ..22
Addressing Banks of Motors..22
Addressing All Motors At Once..23
Addressing More Than 16 Motors ...23
Example #9 (Coordinated motion with axes performing same motion)..................................23
Example #10 (Coordinated motion with axes performing different motions)..........................23

Appendix 1. Stepper Motor Electrical Specification ...24
Appendix 2. Homing Algorithm Detail ..26

Overview..26
Main Axis Homing Details..27
Second Axis Homing Details ...27
Manual homing ..28
Homing to a hard stop ...28
Homing to the index...28

Appendix 3. Microstepping Primer ...29
Appendix 4. Heat Dissipation...30
Appendix 5. Step Loss Detection Using Opto..31
Appendix 6. OEM Protocol With Checksum ..32

Introduction..32
OEM Protocol Example 1 ..32

 Page 3 of 63

OEM Protocol Example 2 ..33
Appendix 7. Device Response Packet...34

Introduction..34
Response Packet Structure...34
Example Initialization Error Response ..35
Example Invalid Command Response ..35
Example Operand Out Of Range Response...35
Example Overload Error Response...35
Example Response To Command “/1?4” ..36

Appendix 8. Position Correction Mode and Overload Report Mode..37
Position Correction Mode (V6.7+) ...37
Setting Up Encoder Feedback...37
Fine position correction (V6.99+) ..38
Notes On Feedback Mode...39
Other Notes ...40
Dual Axis Position Correction Mode..40
Arbitrary Measurement Units...40
Overload Report Mode ..40
Auto Recovery in Feedback Mode ..41

Appendix 9. Analog Inputs and Analog Feedback...43
Analog Inputs...43
Potentiometer Position Command...44
Potentiometer Velocity Mode (joystick mode) ...45
Potentiometer Position Feedback ...46

Appendix 10. Sinusoidal Scan ...48
Appendix 11. Daughter Cards..49

Dual Axis Stepper Daughter Card (firmware V6.79 or later) ...49
Bidirectional Current Mode Drive Daughter Card For I/O Function...50
Bidirectional Drive Daughter Card For DC Servo..50
Bidirectional Voltage Mode Drive Daughter Card For I/O Function (-PW).............................51
Logic Output Daughter Card..51
Input Current Consideration When Using Daughter Cards ...51

Appendix 12. On-the-fly Parameter Change..52
Appendix 13. Addressing More Than 16 Motors On Same Bus..53
Appendix 14. Encoders and Step/DIR Pulse Input ..54

Read-Only Mode ...54
Encoder/Step and Direction Following Mode ..54
Main Axis Encoder Feedback Mode..54
Dual Axis Feedback Mode...55

Page 4 of 63

 Table of Contents

Electrical ..55
Appendix 15. Jog Modes and Limit Switches ..56

Jog ...56
Limit Modes ...56
Noise Considerations ..56

Appendix 16. S Curve ..57
Appendix 17. Inputs and Outputs...58
Appendix 18. EZ4AXIS Special Commands..59

To move one motor at a time...59
To move all motors simultaneously ...59
On-the-Fly parameter change ...60
Home inputs status..60
Coordinate mode and Semi-Independent mode ...60
Exceptions to main command set ...61
Halt and Skip on status of limit switches ...61
Reading back encoder inputs as I/O ...61
Home Flags ...61
Programmable Threshold on Axis Inputs ..62
Current and voltage ratings and motor selection...63

 Page 5 of 63

Page 6 of 63

This page intentionally blank

 1. Introduction

1. Introduction

Overview

This document describes the operation and command set for the
EZStepper® models EZHR17EN, EZHR23ENHC, and EZ4AXIS
controllers/drivers.

Command Syntax

Commands for the EZStepper® are single alpha characters normally
followed by a numeric value. The alpha character represents “what to
do” and the numeric value represents “how much to do it”.

You can set values for desired velocities, accelerations, and positions.
Commands can be issued one at a time or sent in a group. This allows the
setting of all move parameters in one command. You can also create
loops in the strings and cause the EZStepper® to become a stand-alone
device that responds to switch inputs. Finally, storing such strings in the
onboard EEPROM allows the EZStepper® to power up into a mode of
your choice, so that it can act with no computer attached.

The commands are simply typed into a terminal program such as
“Hyperterminal”; no special software is required. The EZStepper® can
even be commanded from a serial enabled PDA (personal digital
assistant).

 Page 7 of 63

2. Command Set

2. Command Set

(Also see examples beginning on page 17.)

Table 1. Command Set

Command

(case sensitive)
Operand Description

POSITIONING COMMANDS
NOTE: In firmware versions 6.7 and above, negative positions are allowed (e.g. /1A-1000R).

A 0-(2^31)
Move motor to absolute position .
(microsteps or quadrature encoder ticks - 32 Bit Positioning).
E.g. /1A10000R

P 0-(2^31)

Move Motor relative in positive direction.
(microsteps or quadrature encoder ticks)
A value of zero will cause an endless forwards move at speed
V. (i.e., enter into Velocity Mode) The velocity can then be
changed on the fly by using the V command.
An endless move can be terminated by issuing a T command
or by a falling edge on the Switch2 Input.
E.g. /1P10000R

D 0-(2^31)

Move Motor relative in negative direction.
(microsteps or quadrature encoder ticks)
(NOTE: for a finite move, the ending Absolute position must be
greater than zero).
A value of zero for the operand will cause an endless
backwards move at speed V. (i.e. enter into Velocity Mode).
The velocity can then be changed on the fly by using the V
command.
An endless move can be terminated by issuing a T command
or by a falling edge on the Switch2 Input.
E.g. /1D10000R NOTE: Ending position must be > 0

HOMING COMMANDS

Z
0-(2^31)
(400)

Home/Initialize Motor.
Motor will turn toward 0 until the home opto sensor (opto #1) is
interrupted. If already interrupted it will back out of the opto
and come back in until re-interrupted. Current motor position is
set to zero.
E.g. /1Z300000R
See Appendix 2 for further details.

z 0-(2^31)

Change current position without moving.
Sets current position to be position specified without moving
motor. New microstep position (preferably) should have the
same remainder as old position, when divided by 1024, else
the motor may physically move/lose up to 2 steps when this
command is issued.
E.g. /1z65536R
NOTE: This command must be issued after at least one A
command, because the first A command initializes all registers
to zero.

f
0 or 1
(0)

Home Flag polarity.
Sets polarity of home sensor, default value is 0.
(See Appendix 2) E.g. /1f1R

Page 8 of 63

 2. Command Set

 Page 9 of 63

Command

(case sensitive)
Operand Description

ap 0 to 15

Invert inputs. (requires firmware V7.05F+)
Inverts each of the 4 main inputs depending on whether the
binary interpretation of the 4-bit number has the bit set or zero.
This command is useful for toggling the polarity of the home
flags and limits. E.g. /1ap7R will invert inputs 0,1 & 2 (binary
of 7 is 0111)

F
0 or 1
(0)

Change direction of rotation considered positive.
This should only be done once on power up. Do not use if in
Encoder Feedback mode. E.g. /1F1R

SET VELOCITY COMMANDS

V

1-2^24
(305064)

In Position Mode Set Max/Slew Speed of motor.
Sets microsteps per second. It is recommended that this drive
be left in 256 micro-step mode, since very high microsteps/sec
numbers can be issued.
E.g. /1V100000R
If the encoder ratio (aE command) is set, the units of velocity
change to encoder counts/second.

SET ACCELERATION COMMANDS

L
0-65000
(1000)

In EZHR17EN, set acceleration factor.
Accel in microsteps / sec^2) = (L Value) x
(400,000,000/65536) .
E.g.. using t=V/a /1L1R takes 16.384 seconds to get to a
speed of V=100000 microsteps/second
NOTE: Acceleration does not scale with encoder ratio.

B 0-65000 Bump jog distance. See n1 command.

LOOPING AND BRANCHING COMMANDS

g
Beginning of a repeat loop marker. See examples below on
how to set up a loop. E.g. /1gP10000M1000G10R

G 0-30000

End of a repeat loop marker. Loops can be nested up to 4
levels. A value of 0 causes the loop to be infinite. (Requires T
command to Terminate). If no value is specified 0 is assumed.
E.g. /1gP10000M1000G10R

H 01-14

Halt current command string and wait until condition
specified:
01 Wait for low on input 1 (Switch 1)
11 Wait for high on input 1 (Switch 1)
02 Wait for low on input 2 (Switch 2)
12 Wait for high on input 2 (Switch 2)
03 Wait for low on input 3 (Opto 1)
13 Wait for high on input 3 (Opto 1)
04 Wait for low on input 4 (Opto 2)
14 Wait for high on input 4 (Opto 2)
If Halted operation can also be resumed by typing /1R.
Also see S command for I/O dependant program execution.
If an edge detect is desired, a look for Low and a look for High
can be placed adjacent to each other E.g. H01H11 is a rising
edge detect.
E.g. /1gH02P10000G20R - waits for switch 2
H command with no number after it waits for Switch 2 Closure
(low).

2. Command Set

Page 10 of 63

Command

(case sensitive)
Operand Description

S 01-14

Skip next instruction depending on status of switch.

01 Skip next instruction if low on input 1 (Switch 1)
11 Skip next instruction if high on input 1 (Switch 1)
02 Skip next instruction if low on input 2 (Switch 2)
12 Skip next instruction if high on input 2 (Switch 2)
03 Skip next instruction if low on input 3 (Opto 1)
13 Skip next instruction if high on input 3 (Opto 1)
04 Skip next instruction if low on input 4 (Opto 2)
14 Skip next instruction if high on input 4 (Opto 2)

Program branching to a complex subroutine can be
implemented by making the next instruction a stored string
execution. (See examples). Loops can be escaped by
branching to a stored string with no commands.
E.g. /1gS02A10000A0G20R - skips on switch 2
Also see H command for I/O dependant program execution.

PROGRAM STORAGE AND RECALL

s 0-15

Stores a program 0-3 or 0-15 depending on model,
Program 0 is executed on power up. (25 full commands max
per string) E.g. /1s1A10000A0R
NOTE: This command takes approx 1 second to write to the
EEPROM.

e 0-15
Executes stored program 0-15.
E.g. /1e1R

PROGRAM EXECUTION

R
Run the command string that is currently in the execution
buffer.
E.g. /1R

X Repeat Run the current command string.

SET MAX MOVE CURRENT / HOLD CURRENT

m

0-100
(25)

For Steppers “ Move” Current on a scale of 0 to 100% of
max current.
100% = 2A for EZHR17EN.
E.g. /1m40R

h
0-50
(10)

Sets “Hold” current on a scale of 0 to 50% of max current.
100% = 2A for EZHR17EN
E.g. /1h15R

aw - Reserved

ax - Reserved

ay - Reserved

MISC

p 0-65000

Ping Command (lower case “p”)
This command will send a numeric message back to the host,
when that point in the string is reached.
E.g. /1gA1000p3333A0G0R
Will send the number 3333 every time through the loop.
NOTE: Care must be taken when using this command
because it can tie up the 485 bus.

 2. Command Set

 Page 11 of 63

Command

(case sensitive)
Operand Description

SET MICROSTEP RESOLUTION / ENCODER

j

1, 2, 4, 8, 16,
32, 64, 128,
256
(256)

Adjusts the resolution in micro-steps per step.
It is recommended that step resolution be left at 256
microsteps (default).
(It is recommended that this drive be left in 256 micro-step
mode. Only use reduced resolution if step and direction mode
(n96) is selected and high frequency step pulses cannot be
generated.)
For best microstep results, a motor must be selected that is
capable of microstep operation.

N
1-5
(1)

Special Modes
1 = Encoder With No Index (Default). Homes to Opto.
2 = Encoder With Index. Homes to Index.
3 = Uses Potentiometer 1 as an encoder. See Appendix 9.
4 = First Home to Opto, then home to Index (future release)
5 = CANBUS slave mode. In this mode the unit is a slave to
position messages received via the CANBUS EZLink
Connector. (future release)
6 = Home to Index Exactly, even if the index is on a microstep
(available with beta firmware V7.15).

2. Command Set

Page 12 of 63

Command

(case sensitive)
Operand Description

n
0-128000
(0)

Sets Modes – Interpret as combination of binary bits.
Bit0 (LSB) - /1n1R Enable Pulse Jog mode. Jog distance is
given by “B” command. Velocity is given by V command . The
Switch Inputs become the Jog Inputs.
Bit1 - /1n2R Enable Limits. (The two optos become limits
switches). The polarity of the limits is set by the f command
Bit2 - /1n4R Enable Continuous Jog mode. Continuous run of
motor while switch is depressed. Velocity is given by V
command.
Bit3 - /1n8R Enables Position Correction mode. See Appendix
8.
Bit4 - /1n16R Enabled Overload Report Mode. See Appendix
8.

Bit5 - /1n32R Enable Step And Direction Mode if (1) or enable
Dual Encoder Mode if (0) E.g. /1n96R<CR> (96=32+64)
Enables step and dir mode and slaves the motor to it. (/1?10
reads the count) See Appendix 14.
Bit6 - /1n64R Enable Motor slave to encoder/step-dir.
Bit7 - /1n128R Used for Joystick mode. See Appendix 9.
Bit8 - /1n256R When set, this bit will disable the response from
the drive. (future release)
Bit9 and Bit10 - When set, these bits will execute one of the
stored programs 13, 14 or 15 whenever the feedback shuts
down the drive due to an overload or an error. (“au” retries are
exhausted. See Appendix 8.
/1n512R will execute program 13.
/1n1024R will execute program 14.
/1n1536R will execute program 15.
See Appendix 8 for an example..

Bit11 - /1n2048R Reserved.
Bit12 - /1n4096R Reserved.
Bit13 - /1n8192R Uses potentiometer 2 to command the
motion of the motor. See Appendix 9.
Bit14 - /1n16384R When Set, this bit will kill any move if switch
1 is pushed. See also “d” command.
Bit15 - /1n32768R When Set, this bit will kill any move if switch
2 is pushed. . See also “d” command.
Bit16 - /1n65536R When Set, potentiometer on Opto 2 input
will set velocity. (Joystick Mode) See Appendix 9.

an 16384

/1an16384 switches the limits from the main axis from the
two opto inputs (inputs 3,4) to the two switch inputs
(inputs 1,2) .
Example /1an16384R . The second axis limits remain
unchanged at 1,2. (Firmware version 6.998+)

POSITION CORRECTION / FEEDBACK MODE

See Appendix 8 for position correction commands.
See Appendix 16 for s curve modes.

 2. Command Set

 Page 13 of 63

Command

(case sensitive)
Operand Description

MISCELLANEOUS

b

9600
19200
38400
to 230400
(9600)

Adjustable baud rate
E.g. /1b19200R
This command will usually be stored as program zero and
execute on power up. Default baud rate is 9600.
NOTE: correct termination and strict daisy chaining required
for reliable operation at higher baud rates.

o
0-3000
(1500)

Allows the user to correct any unevenness in microstep
size.
It is best to adjust this with a current probe, but adjusting for
lowest audible noise is a good approximation. This command
can be executed while the motor is running. Try values very
near 1500, such as 1470.

M 0-29999 Wait M number of milliseconds.

B 0-65000 Set jog distance when in n1 mode

ar 5073

Processor reset (Available in V6.7+)
This command will initiate a Processor Reset the same as that
which happens on power up. 5073 is chosen to avoid
inadvertent resets. E.g. /1ar5073R<CR>

aP
0-30000
(5)

Response delay (Available in V6.79+)
This command allows the delay from the controller receiving
the command to the response being sent out to be
programmed. E.g. /aP1000R<CR> sets the delay to 1000mS
(measured in milliseconds)

d
0-65000
(10)

Switch debounce value
Applies to kill move command only, The switch one or two
must be depressed for a period of this number x 50µS prior to
a Kill Move being called.

K
0-65000
(0)

Backlash compensation
When a non-zero value of K is specified, The drive will always
approach the final position from a direction going more
negative. If going more positive, the drive will overshoot by an
amount K and then go back. By always approaching from the
same direction, the positioning will be more repeatable.

SINUSOIDAL SCAN (Available in V5.1 +)

aA 0-2^31 Sets amplitude of scan. See Appendix 10.

aW 0-2^31 Sets frequency of scan. See Appendix 10.

ON/OFF POWER DRIVER

J
0-3
(0)

On/Off Driver – Interpret as 2 bit Binary Value.
3=11= Both Drivers On, 2=10=Driver2 on Driver 1 Off etc.
NOTE: If total current input to the board exceeds 2A, it will be
necessary to change the input fuse to up to 4A.

STEPPER DRIVE DAUGHTER CARD COMMANDS

aM 1 – 2

Selects drive.
 /1aM1R selects first drive. From then on all commands are
sent to drive 1.
/1aM2R selects drive 2. See Appendix 11.
The second drive homes to opto #2 or switch #1.

2. Command Set

Page 14 of 63

Command

(case sensitive)
Operand Description

BIDIRECTIONAL DRIVE DAUGHTER CARD
NOTE: When using the Logic Output daughter card, all the daughter card control signals become
available as TTL digital outputs, including PWM. See Appendix 11.

l 0-500
/1l400R (lower-case L) sets current to 80%. (NOTE: the range
was changed from 0-100 to 0-500 in firmware version V7.05A)

O 1 /1O1R sets the current flow one way.

I 1 /1I1R sets the current flow in the other direction.

DEVICE RESPONSE PACKET

See Appendix 7 for detailed description of device response to
commands.
Some commands are new and present only in later models.
(AllMotion, Inc. reserves the right to enhance the specifications
at any time)

ANALOG-TO-DIGITAL CONVERTER COMMANDS

All four Inputs are ADC inputs, and can be read and acted
upon by the program. Please see Appendix 9.

?aa
Reads back all 4 Input ADC values.
E.g. /1?aa<CR>
The readback order is channels 4:3:2:1

at

100000 to
116368
200000 to
216368
300000 to
316368
400000 to
416368
(6144)

Sets the threshold, upon which a “one” or “zero” is called
for each of the 4 channels.
The Number represents the channel number followed by a 5
digit number from 00000-16368 which represents the
threshold on a scale from a 0-3.3V. The default values are
6144 for all 4 channels which represents 1.24V.

Changing the threshold allows the H and S commands to
work on a variable analog input value which essentially allows
the program to act upon an analog level. This can be used for
example to regulate pressure to a given level, by turning a
motor on/off at a given voltage.

E.g. /1at106144R sets the threshold of channel 1 to 6144.
Note that leading zeros are required for the threshold value,
which is always 5 digits plus the channel number.

?at
Reads back the thresholds for all 4 channels.
The readback order is channels 4:3:2:1 E.g. /1?at<CR>

POTENTIOMETER POSITION COMMAND

The motion of the Stepper can be slaved to value read from
Potentiometer2. Please see Appendix 9.

ao
0-20000
(0)

After multiplication by the am value, this offset is added to
obtain the position command. E.g. /1ao1000R<CR>

am
0-20000
(256)

The Potentiometer value is multiplied by this value and
divided by 256 to get the position command. E.g.
/1am512R<CR>

ad
0-20000
(50)

Sets a deadband (in microsteps) around the potentiometer
value used for the last move, which must be exceeded
before a new move command is issued. The deadband is
measured in microsteps and will need to be increased as the
gain is increased. E.g. /1ad100R<CR>

 2. Command Set

 Page 15 of 63

Command

(case sensitive)
Operand Description

Hardware protocol:
The EZStepper® communicates over the RS485 bus at 9600 baud, 1 stop bit, no parity, no flow
control.

IMMEDIATE QUERY COMMANDS

The following commands are “Immediate” commands, and cannot be cascaded in strings or stored.
These commands execute while others commands are running.
These commands do not require an “R” at the end.

T
Terminate current command or loop.
E.g. /1T

? 0
Returns the current commanded motor position.
E.g. /1?0

? 1 Reserved

? 2 Returns the current Slew/Max speed for Position mode.

? 3 Reserved

? 4

Returns the status of all four inputs, 0-15 representing a 4-
bit binary pattern.
Bit 0 = Switch1 Bit 1 = Switch2
Bit 2 = Opto 1 Bit 3 = Opto 2

? a4

Returns the status of all four inputs, plus the value of the
primary encoder inputs, read as digital I/O bits 0-127,
representing a 7-bit binary pattern. /1?a4
Bit 0 = Switch1 Bit 1 = Switch2
Bit 2 = Opto 1 Bit 3 = Opto 2
Bit 4 = Encoder CHA Bit 5 = Encoder CHB
Bit 7 = Encoder Index

? 5 Returns the current velocity mode Speed. (Stepper Only).

? 6
Returns the current step size microsteps /step (HR Version
Only).
Selected using J command.

? 7 Returns the current ‘o’ value. (HR version only)

? 8 Returns Encoder Position. (can be zeroed by zi command)

? 9 Erases all stored commands in EEPROM.

? 10

Returns the second encoder (n=0) / or step and dir input
(n=32) count.
NOTE: It is possible to just count pulses on switch inputs with
this mode. (future release)

& Returns the current firmware revision and date.

2. Command Set

Page 16 of 63

Command

(case sensitive)
Operand Description

Q

Query current status of EZStepper®/EZServo®.
Returns the Ready/Busy status as well as any error conditions
in the “status” byte of the return string.
The return string consists of the start character (/), the master
address (0) and the status byte. Bit 5 of the status byte is set
when the EZStepper/EZServo is ready to accept commands. It
is cleared when the EZStepper/EZServo is busy. The least
significant four bits of the Status byte contain the completion
code. The list of the codes is:
0 = No Error
1 = Initialization error
2 = Bad Command
3 = Operand out of range
Errors in OpCode will be returned immediately, while Errors in
Operand range will be returned only when the next command
is issued. See Appendix 7.

n The n mode works in both immediate mode and in strings.

$ /1$<CR> Returns the currently executing command string.

Other Query

In firmware version 7.02 and above it is possible to query
parameters by using the same letter that set the parameter.
E.g. /?A returns current position, /1?V returns velocity, and
/1?m returns move current setting.

 3. Single-Axis Programming Examples

3. Single-Axis Programming Examples

The following examples are command strings in DT protocol.

Example #1 (A move to absolute position)

/1A12345R<CR>

Command breakdown:

/ Start character. It lets the EZSteppers® know that a command
is coming in.

1 Device address, (set on address switch on device).

A12345 Turn to absolute position 12345

R Run the command.

<CR> Carriage return. Tells the EZStepper® that command string is
complete and should be parsed.

NOTE: Hyperterminal issues each character as you type it in. Therefore
it is not possible to cut and paste in Hyperterminal. Backspace is allowed
only up to the address character. If backspace is used, all characters
“backspaced” must be retyped in. If a typing error is made, typically hit
enter and type it all in again – what was typed in will be overwritten as
long as the R command at the end was not present.

Example #2 (Move loop with waits)

 /1gA10000M500A0M500G10R<CR>

Command breakdown:

/ Start character. Tells the EZSteppers® that a command is
coming in.

1 Device address, (set on address switch on device).

g Start a repeat loop.

A10000 Turn to absolute position 10000.

M500 Wait for 500 milliseconds.

A0 Turn to absolute position 0.

M500 Wait for 500 milliseconds.

G10 Repeat string 10 times beginning from the location of the small
“g.”

R Run the command.

<CR> Carriage return. Tells EZStepper® that command string is
complete and should be parsed.

To terminate the above loop while in progress, type /1T.

 Page 17 of 63

3. Single-Axis Programming Examples

Example #3 (Program storage and recall)

This example stores a command string for later execution:

/1s2gA10000M500A0M500G10R<CR>

This stores the program in the preceding example as program 2.

/1e2R<CR>

Will execute the stored program #2.

NOTE: Program 0 is always executed on power-up. If we used 0 instead
of 2 in the above example, this program would execute automatically on
power-up.

To erase a program, store the program without any commands.

e.g., /1s0R

NOTE: The first-ever A command will reset some motion parameters to
default; hence it is recommended that programs stored in s0 have A0 as
the first command.

Example #4 (Set current, wait for Switch 2 closure, home to opto)

/1s0m75h10gJ3M500J0M500G10H02A1000A0Z10000R<CR>

Command breakdown:

/1s0 Stores the program that follows in motor number 1 stored
string 0 (string 0 is executed on power-up).

m75 Set move current to 75% of max .

h10 Set hold current to 10% of max.

g Start a loop.

J3 Turn on both on off drivers.

M500 Wait 500 mS.

J0 Turn off both on off drivers.

M500 Wait 500 mS.

G10 Repeat loop above 10 times.

H02 Wait for a switch2 input to go low.

A1000 Move to position 1000.

A0 Move to position 0.

Z10000 Home the stepper to opto #1. Max steps allowed to find
opto = 10000.

R Run.

Page 18 of 63

 3. Single-Axis Programming Examples

Example #5 (Nested loop example)

/1gA1000A10000gA1000A10000G10G100R<CR>

Command breakdown:

/1 Talk to drive number 1.

g Start outer loop.

A1000 Go to Absolute position 1000.

A10000 Go to Absolute position 10000.

g Start inner loop.

A1000 Go to Absolute position 1000.

A10000 Go to Absolute position 10000.

G10 Do inner loop 10 times. (end of Inner loop).

G100 Do outer loop 100 times. (end of outer loop).

R Run.

NOTE: To terminate the above loop while in progress, type /1T.

 Page 19 of 63

3. Single-Axis Programming Examples

Example #6 (Skip/Branch instruction)

Examples:

/1s0gA0A10000S13e1G0R<CR> (stored string 0)

/1s1gA0A1000S03e0G0R<CR> (stored string 1)

This stores two programs in string 0 and string 1, and the code switches
from one program to the other depending on the state of input 3. In the
example above, the code will cycle the motor between position A0 and
A10000 if input 3 is high, and between A0 and A1000 if input 3 is low.

Stored string 0:

/1 Talk to motor 1.

s0 Store following in string0 (executed on power-up).

g Start loop.

A0 Go to absolute position 0.

A10000 Go to absolute position 10000.

S13 Skip next instruction if 1 (high) on input 3.

e1 Jump to string 1.

G0 End of loop (infinite loop).

R Run.

Stored string 1:

/1 Talk to motor 1.

s0 Store what follows in string0 (executed on power up).

g Start loop.

A0 Go to absolute position 0.

A1000 Go to absolute position 1000.

S03 Skip next instruction if 0 (low) on input 3.

e0 Jump to string0.

G0 End of loop (infinite loop).

R Run.

Page 20 of 63

 3. Single-Axis Programming Examples

Example #7 (Monitor four switches and execute four different programs
depending on which switch input is pushed)

/1s0gS11e1S12e2S13e3S14e4G0R<CR>

/1s1A1000e0R<CR>

/1s2A2000e0R<CR>

/1s3A3000e0R<CR>

/1s4A4000e0R<CR>

This stores five program strings for an endless loop.

 At power-up String 0 automatically executes and loops around
sampling the switches one by one, and skipping around the
subsequent instruction if it is not depressed.

 Then for example when Switch1 is depressed stored String 1 is
executed, which moves the stepper to position 1000.

 Execution then returns to Stored String 0, due to the e0 command at
the end of the other stored strings.

 If the switch is still depressed it will jump back to String 1 again, but
since it is already at that position there will be no visible motion.

To terminate the above endless loop, type /1T.

NOTE: Using an e command to go to another program is a more of a
“GOTO” rather than a “GOSUB” since execution does not automatically
return to the original departure point.

Example #8 (Move 1000 steps forward on rising edge of Switch2)

/1gH02H12P1000G0R

The endless loop first waits for a 0 level on switch1, then waits for a “1”
level on Input2.

Then a relative move of 1000 steps is issued, and the program returns to
the beginning to look for another rising edge.

To terminate the above endless loop, type /1T.

 Page 21 of 63

4. Multiple-Axis Coordinated Motion Programming Examples

4. Multiple-Axis Coordinated Motion
Programming Examples

Introduction
Up to 16 motors can be addressed individually or in banks of 2, 4 ,or
“All”, increasing versatility and ease of programming. Synchronized
motion is possible by issuing commands addressed to individual
EZSteppers® without the “R” (Run) command, which sets up the
command without executing it. At the proper time, the “R” command is
sent to a bank of motors to start several actions in concert.

Addressing Individual Motors
Addressing motors 1-9:

Use /1, /2, etc.

Addressing motors 10-16:

Use the ASCII characters that are above 1 through 9:

10 /: (colon)

11 /; (semi colon)

12 /< (less than)

13 /= (equals)

14 /> (greater than)

15 /? (question mark)

16 /@ (“at” sign) – use setting zero on the address switch for this.)

For example, /=A1000R moves stepper #13 to absolute position 1000.

Addressing Banks of Motors
Addressing banks of two motors:

Motors 1 and 2 /A

Motors 3 and 4 /C

Motors 5 and 6 /E

Motors 7 and 8 /G

Motors 9 and 10 /I

Motors 11 and 12 /K

Motors 13 and 14 /M

Motors 15 and 16 /O

Addressing banks of four motors:

Motors 1,2,3, and 4 : /Q

Motors 5,6,7, and 8 : /U

Motors 9,10,11, and 12: /Y

Motors 13,14,15 and 16 : /] (close square bracket)

Page 22 of 63

 4. Multiple-Axis Coordinated Motion Programming Examples

 Page 23 of 63

Addressing All Motors At Once

Use the global address /_ (underscore).

Addressing More Than 16 Motors

 It is possible to have add an offset of 16 or 32 to the number on the
address switch. Please see the aB command in Appendix 13 for
explanation.

Example #9 (Coordinated motion with axes performing same motion)

Command:

/_A10000R<CR>

Breakdown:

/_ (Slash then underscore) Address all 15 motors.

A1000 Go to absolute position 1000.

R Run. All motors go to absolute position 1000.

Example #10 (Coordinated motion with axes performing different motions)

Command:

/1A10000<CR>

/2A200<CR>

/AR<CR>

Breakdown:

/1A10000<CR> Set up motor 1 command buffer to go to absolute
position 10000.

/2A2000<CR> Set up motor 2 command buffer to go to absolute
position 2000.

/AR Execute current commands in buffer for bank address
“A” which is motors 1 and 2. (The “A” here is an
address of a bank of motors 1 and 2 because it comes
after the slash, and should not be confused with the “A”
that means absolute position.) Both moves will start at
the same time, and complete at a time determined by
the velocity set for each axis.

Appendix 1. Stepper Motor Electrical Specification

Appendix 1. Stepper Motor Electrical Specification

The EZStepper® will work with most stepper motors. However, the
performance achieved will be a function of the motor used.

A stepper motor moves by generating a rotating magnetic field, which is
followed by a rotor. This magnetic field is produced by placing a sine
wave and a cosine wave on two coils that are spaced 90 degrees apart.
The torque is proportional to the magnetic field, and thus to the current in
the windings.

As the motor spins faster, the current in the windings need to be changed
faster in a sinusoidal fashion. However the inductance of the motor will
begin to limit the ability to change the current. This is the main limitation
in how fast a motor can spin.

Each winding of the motor can be modeled as an inductor in series with a
resistor. If a step in voltage is applied, the current will rise with time
constant L/R. If L is in Henrys and R is in ohms, then L/R is the time it
takes in seconds for the current to reach 63% of its final value. (NOTE:
there is also the back EMF of the motor, which essentially subtracts from
the applied voltage.)

The current I for a step function of voltage V into a coil is given by:

I = (V/R) (1-exp(tR/L))

This equation is a standard response of a first-order system to a step
input. The final value of current is seen to be V/R. (This system is similar
to a spring (L) in parallel with a damper (R) being acted upon by a step
in force (V) giving a resulting velocity (I).)

Page 24 of 63

 Appendix 1. Stepper Motor Electrical Specification

There are two methods by which the current can be made to change
faster:

1. Reduce the inductance of the motor.

2. Increase the forcing function voltage V.

For (1) it is seen that for high performance, a motor with low inductance
is desired.

For (2) the trick is to use a motor which is rated at about ¼ of the supply
voltage (V). This means that it takes less time to ramp the current to a
given value. (Once the current reaches the desired value the “chopper”
type drive used in the EZSteppers® will “chop” the input voltage in
order to maintain the current—so the current never actually gets to the
final value of V/R, but the advantage of “heading towards” a higher
current with the same time constant is that the current gets to any given
value faster.) The lower voltage motor also has less back EMF, and does
not subtract as much from the applied voltage.

So, for example, for a 24V supply, use a motor rated at around 6V, and
then use the “m”, and “h” commands to set the current regulation at or
below the rating for the motor. The default values on power-up are
h=10% and m=25%, and should be safe for most motors.

 Page 25 of 63

Appendix 2. Homing Algorithm Detail

Appendix 2. Homing Algorithm Detail

Overview

The Z command is used to initialize the motor to a known position.
When issued, the motor will turn toward 0 until the home opto sensor is
interrupted. If already interrupted, it will back out of the opto and come
back in until re-interrupted. Current motor position is set to zero. The
homing is done at the current speed V. The maximum number of steps
allowed to go toward home is defined by the Z command operand + 400.
The maximum number of steps away from home (while sensor is cut) is
10000.

To set up the home flags:

First ensure that a positive move, e.g. /1P100R, moves away from home
and the home flag. If motor does not move away from home, flip the
connections to only one of the windings of the stepper.

The default condition expects the output of the home flag to be low when
away from home (as is the case in an opto). If home flag is high when
away from home (as in the case of the “normally open” switch), issue the
command /1f1R to reverse the polarity that is expected of the home flag.

Issue the command /1Z100000R or /1f1Z100000R as necessary.

Homing should be done at a slow speed, especially if homing to a narrow
index pulse on an encoder, which may be missed at high speeds.

Opto and flag should be set up to be unambiguous. For example, when
the motor is at one end of travel, the flag should cut the opto; and when
at other end of travel, the flag should not cut the opto. There should be
only one black-to-white transition possible in the whole range of travel.
Home can be done to an opto (N1 mode) or index pulse (N2 mode).

The main axis homes to opto1 (input 3). This opto is also the lower limit.

The main axis uses opto 2 (input 4) as its upper limit.

The second axis on the daughter card uses the two switch inputs as home
and limits:

 Switch 1 (input 1) is home and lower limit.

 Switch 2 (input 2) is the upper limit.

Note that limits are engaged by /1n2R. (lower case “n”). The default (n0)
mode does not check the limits when moving.

Default “f” mode (f0) expects the inputs to be low when the axis is away
from the limits/home. /1f1R reverses this, “f1” can be chosen per axis,
e.g., /1aM1f1aM2f0R selects different polarities for the home flags of the
two different axes.

Furthermore, the threshold for the inputs’ high/low transition level can
be programmed via the “at” (@) command. Thus, if for example the
home sensor does not fully pull to a TTL low level, as in the case of a

Page 26 of 63

 Appendix 2. Homing Algorithm Detail

reflective sensor, the intermediate level can be accommodated by the
EZStepper® circuits without external signal conditioning.

NOTE: The optos and switches are interchangeable. If four optos are
desired, power for the extra optos can be drawn from the 5V supply on
the encoder connector. These extra optos may require an external resistor
in series with the LED. When connecting switches, connect between any
input and ground.

Main Axis Homing Details

There are four full steps in a single electrical cycle that moves the
stepper motor (A+, B+, A-, B-). For repeatability in homing, the home
position is set to first step in that cycle which occurs after the flag edge
has been seen. (This means that the home position is defined some ways
beyond the middle of the flag).

However, there is a small but definite chance that an ambiguity in home
position may occur in the rare case that the exact point of switching into
A+ occurs at the same point at which the flag gets cut. In this case, a
four-step ambiguity in home position may exist, because sometimes the
flag may cut just before and sometimes just after. The procedure below
describes a method by which the ambiguity can be removed. However,
this procedure need not be followed if a four-step inaccuracy in Home
position is acceptable.

To eliminate the home position ambiguity:

Issue the Z command, and allow the motor to home.

Move 2 full steps (in any direction),

Mechanically move the flag edge (or sensor) such that it trips in the
middle of the sensor by adjusting it while watching the status LED on the
board which shows the status of the home sensor. This will ensure that
the flag trips at A- and thus the motor will home to a unique position of
A+.

Another way to do this, if it is not hazardous:

Put the motor in an endless homing loop via /1gZ10000GR.

Move the flag/opto around while the motor is homing. It will be noticed
that the motor will home to two distinct positions that are four steps
apart. Make sure the high-to-low transition point of the opto is NOT near
these positions (the exact position does not matter as long as it is not near
the place where it homes to).

Second Axis Homing Details

The second axis will home to the exact transition of the home flag, and
does not seek a Phase A zero. The second axis uses the switch inputs for
homing and limits.

 Page 27 of 63

Appendix 2. Homing Algorithm Detail

Manual homing

Motors can be manually homed to any input by the use of a polling loop
such as:

1. /1s1z0R (Store set current position to zero program 1.)

2. /1z100000gD1S04e1GR (Go backward in an endless loop until input
4 goes high.)

Homing to a hard stop

It is possible to send the motor against a hard stop and then force the
position counter to zero or some other value as necessary. /1z0R (lower
case “z”) zeros the position counter and encoder for the motor that is
currently selected. /1z333R sets the position to 333 etc. So /1aM1z0R
zeros the counters for motor 1 and /1aM2z0R zeros the position counters
for motor 2.

Homing to the index

N2 Mode: The main axis will home to the encoder index in /1N2R
mode. The index must be at least 100µS in width. The axis will home to
the next phase A zero after passing the Index. In this mode it is necessary
to ensure that the Index is not on a Phase A zero, or else a four-step
ambiguity in home position will exist. This is explained in Main Axis
Homing Details, above. Note that the index is sampled at a 20kHz rate,
and may be missed if the speed of motion is too high.

N6 Mode (available in beta firmware V7.15): In this mode, the motor
will home to the index position exactly, even if the index is on a micro-
step position. This mode employs a high-speed input capture to ensure
that the index will be detected even at high speed. The motor will
decelerate to rest slowly after the index has passed, and will have a
negative position after homing. In order to view the exact home position,
issue an A0 after the Z command.

Example:

 /1n0m30h30P100V1000aE25600N5Z10000A0n8ac1R

Page 28 of 63

 Appendix 3. Microstepping Primer

Appendix 3. Microstepping Primer

First consider a full stepping driver.

A stepper motor moves by having two windings that are orthogonal to
each other and sequencing the current in these windings.

When full stepping, a typical sequence is:

A+ (Only winding A current applied in +ve Direction)

B+ (Only winding B current applied in +ve Direction)

A- (Only winding A current applied in -ve Direction)

B- (Only winding B current applied in -ve Direction)

(A full electrical cycle consists of four steps.)

It can be seen that if the windings are not physically placed orthogonally,
the four steps may not be of equal size, and the difference in motion will
be a constant only if the number of steps is divisible by four, even when
in full step mode.

Now consider microstepping:

Microstepping is achieved by placing two sinusoidally varying currents
that are 90 degrees apart in the windings of the stepper. This causes a
torque vector of equal length to rotate, causing smooth inter-step motion
of the rotor.

However, in order to get even motion in every step it is necessary:

 That the windings be mechanically orthogonal

 That the windings produce equal torques for equal currents

 That there is no other “detent torque” acting upon the rotor in the
absence of current. (This detent torque is easily felt by rotating the
stepper with windings disconnected and not shorted. A motor that is
good for microstepping will feel smooth when rotated by hand—
somewhat like a DC motor—with little tendency to detent.)

 That the current not be so small that the driver cannot regulate it to
the microstepping accuracy desired.

In general, most inexpensive stepper motors cannot microstep with
accuracy. Typically, a special motor designed for microstepping must be
run at a significant current in order to get even microsteps. When
accuracy is required, the move current must generally be set equal to the
hold current. This is because if the current is reduced at the end of the
move, the motor will fall back into a detent position.

 Page 29 of 63

Appendix 4. Heat Dissipation

Appendix 4. Heat Dissipation

Most stepper applications require intermittent moving of the motor. In
the EZStepper®, the current is increased to the move current, the move is
performed, and the current is then reduced to the hold current
(automatically). The dissipation in the drive is proportional to the current
flowing in the drive, and therefore the dissipation occurs primarily
during the move.

When the drive generates heat, the heat first warms the circuit board and
heat fin (if any).

Only then does the heat transfer to the surroundings. For intermittent
moves that are less than one minute in duration, the drive primarily cools
using this thermal inertia of the board and heat fin, and not by steady
state dissipation to the surrounding ambient.

The electronics for EZSteppers® are fully capable of running at the rated
voltage and current. However, due to the small size of the boards, which
limits the steady state heat transfer to the ambient, care must be taken
when the drive is used in high duty cycle and/or high current
applications. For conservative operation, it is recommended that the duty
cycle be reduced linearly, from 100% duty at 50% of rated current, to
25% duty at 100% of rated current. (Duty cycle means the percentage of
the time that the drive is moving the load – average over 5 minutes).
Conservatively, the maximum continuous run at 100% current is about
one minute. An on-board thermal cutout typically trips after about two
minutes at 100% current. (This cutout is self-resetting when the drive
cools). Of course, at 50% of current, the drive will run continuously with
no time limit.

Most “intermittent move” applications will NOT require derating of the
drive.

In case the EZStepper® is required to run 100% of the time at 100%
current, forced air cooling or bolting against an aluminum heat fin with
heat-conductive foam is recommended. Use a compliant foam pad such
as Bergquist BER224, available from Digikey.

EZSteppers® are designed with parts rated at 85 C or better. This means
the PCB copper temperature must remain below 85 C. The ambient air
temperature allowed depends on the airflow conditions.

MTBF is 20,000 hr. at 85 C PCB copper temperature, and doubles for
every 10 C under 85 C.

Page 30 of 63

 Appendix 5. Step Loss Detection Using Opto

 Page 31 of 63

Appendix 5. Step Loss Detection Using Opto

For some applications, which operate without encoder feedback, it may
be necessary to detect loss of steps due to the mechanism stalling for any
reason.

Step loss is easily detected by following the algorithm below:

1. Home the stepper to the opto using the Z Command.

2. Move out of the flag a little by issuing, for example, an A100
command.

3. Figure out the exact step on which the flag gets cut by issuing D1
commands followed by /1?4 commands to read back the opto. Let’s
call this value i. (This only needs to be done once during initial
setup).1

4. Execute the move sequence for which step loss detection is needed.

5. Issue a command to go back to absolute position Y+1.

6. Check the opto; it should not be cut (read opto back with the /1?4
command).

7. Now issue a command to go to position Y-1.

8. Check the opto; it should be cut (read opto back with the /1?4
command).

If the opto was not at the state expected, steps may have been lost.

NOTE: Step loss detection can also be done by looking for changes on
the other inputs.

1 See homing algorithm detail in Appendix 2.

Appendix 6. OEM Protocol With Checksum

Appendix 6. OEM Protocol With Checksum

Introduction

The protocol described in the majority of this manual is DT (Data
Terminal). There is, however, a more robust protocol known as OEM
that includes checksums. AllMotion, Inc. drives work transparently
under both protocols, and switch between the protocols depending on the
start transmission character detected.

The OEM protocol uses 02 hex (Ctrl B) as the start character, and 03
Hex (Ctrl C) as the stop character. The 02 Hex start character is
equivalent to the / character in DT protocol.

OEM Protocol Example 1

/1A12345R<CR> in DT protocol is equivalent to

(CtrlB)11A12345R(Ctrl C)# in OEM protocol.

Name Typed Hex

Start Character Ctrl B 02

Address 1 31

Sequence 1 31

Command A 41

Operand 1 31

Operand 2 32

Operand 3 33

Operand 4 34

Operand 5 35

Run R 52

End Character Ctrl C 03

Checksum # 23

The checksum is the binary 8-bit XOR of every character typed,
including the start and end characters. (The sequence character should be
kept at 1 when experimenting for the first time.) Note that there is no
need to issue a carriage return in OEM protocol.

Page 32 of 63

 Appendix 6. OEM Protocol With Checksum

OEM Protocol Example 2

/1gA1000M500A0M500G10R<CR> in DT protocol is equivalent to
(CtrlB)11gA1000M500A0M500G10R(CtrlC)C in OEM protocol.

The C at the end is Hex 43, which is the checksum (binary XOR of all
preceding bytes).

Sequence Character:

The Sequence Character comes into effect if a response to a command is
not received from the drive. In this instance the same command can be
resent with bit 3 (repeat bit) of the sequence byte set, and bits 0-2
representing the sequence number.

When the repeat bit is set consecutive commands received by the drive
must have a different sequence number in order to get executed. (Only
the sequence number is looked at—not the command itself)

This covers both possibilities that (a) the drive didn’t receive the
command, and (b) the drive received the command but the response was
not received.

The sequence number can take the following values:

 31-37 without the repeat bit set

 39-3F with the repeat bit set

(The upper nibble of the sequence byte is always 3.)

 Page 33 of 63

Appendix 7. Device Response Packet

Appendix 7. Device Response Packet

Introduction

EZSteppers® and EZServos® respond to commands by sending
messages addressed to the “Master Device.” The master device (which is
typically a PC) is always assumed to have address zero (0). The master
device should parse the communications on the bus continuously for
responses starting with /0. (It should NOT, for example, look for the next
character coming back after issuing a command, because glitches on the
bus when the bus reverses direction can sometimes be interpreted as
characters.)

Response Packet Structure

After /0, next comes the “Status Character” which consists of 8 bits:

Bit7 Reserved

Bit6 Always set

Bit5 Ready bit. Set when the EZStepper® or EZServo® is ready to
accept a command.

Bit4 Reserved

Bits 3 thru 0. These form an error code N from 0-15:

N Function

0 No Error

1 Init Error

2 Bad Command (illegal command was sent)

3 Bad Operand (Out of range operand value)

4 N/A

5 Communications Error (Internal communications error)

6 N/A

7 Not Initialized (Controller was not initialized before
attempting a move)

8 N/A

9 Overload Error (Physical system could not keep up with
commanded position)

10 N/A

11 Move Not Allowed

12 N/A

13 N/A

14 N/A

15 Command overflow (unit was already executing a
command when another command was received)

Page 34 of 63

 Appendix 7. Device Response Packet

Note that in the RS485 bus, devices must respond right away, after the
master sends a command, before the success or failure of the execution
of the command is known. For this reason, some error messages that
come back are for the previous command. An example of this is “failure
to find home.”

A program that receives these responses must continuously parse for /0
and take the response from the bytes that follow /0. The first character
that comes back may be corrupted due to line turnaround transients, and
should not be used as a “timing mark.”

Example Initialization Error Response

Note that the upper nibble typically only takes on values of 4 or 6 (Hex).

An initialization error response has 1 in the lower Nibble. So the
response is 41 Hex or 61 Hex which corresponds to ASCII character
upper case “A” or lower case “a”, depending on whether or not the
device is busy.

Example Invalid Command Response

Note that the upper nibble typically only takes on values of 4 or 6 (Hex)

An invalid command response has 2 in the lower nibble. So the response
is 42 Hex or 62 Hex , which corresponds to ASCII character upper case
“B” or lower case “b”, depending on whether or not the device is busy.

Example Operand Out Of Range Response

Note that the upper nibble typically only takes on values of 4 or 6 (Hex).

An operand out of range response has 3 in the lower nibble. So the
response is 43 Hex or 63 Hex, which corresponds to ASCII character
upper case “C” or lower case “c”, depending on whether or not the
device is busy.

Example Overload Error Response

Note that the upper nibble typically only takes on values of 4 or 6 (Hex).

An overload error response has 7 in the lower nibble. So the response is
47 Hex or 67 Hex, which corresponds to ASCII character upper case “I”
or lower case “i”, depending on whether or not the device is busy.

 Page 35 of 63

Appendix 7. Device Response Packet

Example Response To Command “/1?4”

FFh: RS485 line turn around character. It’s transmitted at the
beginning of a message.

2Fh: ASCII “/”Start character. The DT protocol uses the ‘/’ for this.

30h: ASCII “0” This is the address of the recipient for the message.

 In this case ASCII zero (30h) represents the master controller.

60h: This is the status character (as explained above).

31h: These two bytes are the actual answer in ASCII.

 This is an eleven which represents the status of the four inputs.

 The inputs form a four-bit value. The weighting of the bits is:

 Bit 0 = Switch 1

 Bit 1 = Switch 2

 Bit 2 = Opto 1

 Bit 3 = Opto 2

03h: This is the ETX, or end-of-text character. It is located at the end
of the answer string.

0Dh: This is the carriage return.

0Ah: This is the line feed.

Page 36 of 63

 Appendix 8. Position Correction Mode and Overload Report Mode

Appendix 8. Position Correction Mode and
Overload Report Mode

Position Correction Mode (V6.7+)

Position correction mode, when enabled, will move until the encoder
reads the correct number. Once enabled, positions are given in
quadrature encoder counts of the encoder (not in microsteps). If the
motor stalls during a move, the mode will re-attempt the move until the
encoder reads the correct number. These algorithms run while the stepper
is in motion and will detect a stalled motor during a move.

There are two main types of feedback arrangements: the first method is
to place the encoder on the motor shaft. The second method is to place
the encoder on the component that is finally positioned, and may be only
be loosely coupled to the motor due to backlash etc. The EZStepper®
will work with either type of feedback.

Setting Up Encoder Feedback

1. Set the encoder ratio.

NOTE: the encoder ratio should preferably be changed when at the zero
position.

Encoder Ratio = (microsteps/rev divided by quadrature encoder
ticks/rev) x 1000.

The encoder ratio must preferably be a whole number after the multiply
by 1000. (If this is not a whole number, see discussion further down).

The motor must be left in 256th microstep mode for correct operation of
feedback mode.

For example, a 1.8-degree stepper (running in 1/256th step mode), which
has 200x256 microsteps /rev, is hooked up to a 400-line encoder that has
1600 quadrature encoder counts.

aE= ((200x256)/(400x4)) x1000=32000

Issue the command /1aE32000R to set this encoder ratio.

NOTE: If the encoder ratio is unknown, do the following:

1. Leave the encoder ratio at its power-up default of 1000.

2. Ensure that the encoder increases its count when the motor moves in
the positive direction. If not, switch either the AB lines on the
encoder, which will reverse the count direction; or switch the wires
to one of the windings on the stepper motor, which will reverse the
direction of rotation (do not use the F command).

3. Issue /1n0R to clear any special modes.

4. Issue /1z0R, which will zero both the encoder and step position.

 Page 37 of 63

Appendix 8. Position Correction Mode and Overload Report Mode

5. Issue /1A100000R and ensure that the move completes at a velocity
that does not stall.

6. Issue /1?0, which reads back the current position. This should be
100000.

7. Issue /1?8, which reads back the encoder position.

8. Issue /1aE0R which auto divides these two numbers.

9. Issue /1?aE, which reads back the encoder ratio computed.

This value read-back is only a rough guide, and will be out by a few
counts due to inaccuracies in the motor position and run-out in the
encoder.

NOTE: The value read-back MUST be overwritten by the EXACT
value that represents ratio.

10. Issue /1aE32000R, or whichever exact number represents the
encoder ratio.

2. (Optional) Set the error in quadrature encoder ticks
allowed before a correction is issued.

E.g. /1aC50R (default is 50)

3. (Optional) Set the Overload Timeout Value.

This is the number of retries allowed under a stall condition.

E.g. /1au10000R (default is 100)

4. Enable the feedback mode.
1. Zero positions just prior to enabling feedback mode by issuing

/1z0R. (Or issue /1z10000R etc. if you need to at this time.)

2. Enable position correction mode by issuing /1n8R.

Example (V6.7+):

/1z0aC50h40m40au100aE32000V1000n8R starts the position
correction mode.

Fine position correction (V6.99+)

When in n8 mode, there are two position correction algorithms:

 The COARSE ALGHORITHM, as described above, operates to
bring the motors to within the value given by “aC” (upper case C).).
This algorithm runs all the time (while the stepper is in motion) and
will detect a motor that is stalled or lagging by more than “aC”
during a move. When a problem is detected the axis will stop and
reissue a move starting from zero velocity so as to slowly spin up
motor that may have stalled at high speed.

In firmware version 6.99+, a fine position correction integrator
algorithm (FINE ALGORITHM) is engaged once the major move is
completed to zero out any small residual position error. The speed of
this correction is affected by the “x” integration period value. /1x10R
is default. Smaller values of x correct faster but may lead to

Page 38 of 63

 Appendix 8. Position Correction Mode and Overload Report Mode

oscillations, e.g., /1x3R. The fine position correction deadband is set
by “ac” (lower case c) E.g.: /1ac10R, the default ac is 20 encoder
counts. This can be adjusted down to zero, if desired but it may take
time to settle depending on stiction and backlash, especially if the
encoder is decoupled from the motor. The integration algorithm runs
on hold current, and this may need to be adjusted to a reasonably
high number, depending on the load. It is also best to run hold
current equal to move current so that the motor does not relax and
detent at the end of the move.

Move complete (non busy) will be asserted when the move
completes to within “ac” for the first time. Subsequent disturbances
greater than “ac” but less than “aC” will be corrected by the fine
correction algorithm and will not be reported as “busy”. Only
disturbances greater than “aC” will result in the coarse correction
algorithm being engaged and busy being asserted.

Example: (V6.99+)
/1aM1z0aC50ac10x10h40m40au100aE32000L100n8R

Notes On Feedback Mode

 If motor consistently stops during a move:

If a very fine line count encoder is used such that for example the
encoder ratio is around 2000, or if the encoder is decoupled from the
motor shaft, or if the encoder ratio has some fractional component
and is non integer, increase the error (aC) allowed for the coarse
algorithm, for example set aC to 2000. This way a move that is in
progress will not be halted and restarted, because the coarse
algorithm detects that the following error is too large. Instead, the
move will complete with some error, and the fine algorithm
integrator will null out the error to within the lower case “ac” value
at the end of the move.

 Busy/Non Busy Status:

The status will read busy until any move is reached to within the
“ac” value; however, once a move is complete any subsequent
disturbance is handled by the fine integrator as long as it is less than
“aC” (upper-case C). These subsequent corrections by the fine
algorithm will not read busy; however, if the error becomes greater
than “aC” the dead reckoning algorithm is turned on, and a formal
correction move is initiated. This move changes the drive status to
busy, and no external commands will then be accepted. It is
important to set the coarse dead reckoning deadband (aC value) to a
reasonable number (for example, 50) else the drive will always be
attempting to correct.

 Page 39 of 63

Appendix 8. Position Correction Mode and Overload Report Mode

Other Notes

 When position correction mode is enabled (/1n8R) the drive will
keep retrying any stalled moves until “au” retries are exhausted, and
will NOT halt any strings or loops upon detection of a stall.

 During position correction mode, /1T will halt any move, but there is
a possibility that the drive may instantly reissue itself a position
correction command, especially if it is fighting a constant
disturbance. It may be necessary to issue a /1n0R to positively halt a
move in progress.

 If the encoder ratio is changed from its default of 1000, the allowed
max position will be decreased from +2^31 by the same ratio. The
count will rollover from positive to negative range when this limit is
exceeded.

 Do not use the upper case “F” (reverse direction) command when
using encoder feedback mode. Instead, switch the encoder AB lines
or the wires to one phase of the motor.

 Jog mode will not work with encoder feedback on.

 Dual Axis Position Correction Mode

In firmware V6.78 and later, it is possible to put both axes into correction
mode.

Examples:

 /1aM1z0aC50au5u3aE12800L100n8R sets up encoder feedback
mode for axis 1.

 /1aM2z0j16aC500ac10au10000aE1000n8R sets up encoder
feedback mode for axis 2.

The second encoder is wired to the 8-pin I/O connector as shown in the
wiring diagram.

Arbitrary Measurement Units

It is not necessary to use feedback mode or even have an encoder, in
order to set the encoder ratio /1aE32000R etc. Setting the encoder ratio
thus allows positioning in any units of the user’s choice.

Overload Report Mode

In n8 feedback mode, the drive will automatically correct any stalled
moves up to the limit given by “au.” Only then will it report Error 9 of
an overload.

However, it may be desirable to detect a stall but not correct it. The n16
mode does just this. The encoder value is continuously compared against
the commanded position and Error 9 is set when these do not match to
within the error band specified by “aC”. When this error occurs, the

Page 40 of 63

 Appendix 8. Position Correction Mode and Overload Report Mode

drive will exit from any loops or multiple command strings it may be
executing.

Overload report mode is enabled by /1n16R, and requires the encoder
ratio to be entered correctly via the “aE” command. Issue /1zR to zero
both the encoder and position counter just prior to issuing /1n16R.

When an overload occurs, the drive can be set to execute stored strings
13, 14, or 15. See auto recovery scripts below.

Auto Recovery in Feedback Mode

Auto Recovery is available in firmware V6.997+.

Auto Recovery Scripts (Available in V6.997+)

In n8 mode, the EZStepper® determines a stalled or overload condition
by checking to see if the encoder is tracking the commanded trajectory.
If the encoder is not following the commanded trajectory within the error
specified by “ac”, a number of retries given by the “au” command are
executed.

When an overload condition is detected (retry counter has exceeded the
“au” value), it will be reported back as an upper or lower case “I” (Error
9) when the status is querried. This status can be used by an external
computer to execute a recovery script.

However, it may be desired that the drive recover by itself in the case of
a stand-alone application. For this purpose, we have the “n” mode bits
n512 and n1024.

It is necessary to combine these bits with n8 so, for example, n512+n8 =
n520.

Depending on which of these bits is set, the servo will execute stored
program 13, 14 or 15 when an overload is detected. Program 12 is also
executed as a last resort if programs 13,14, or 15 cannot auto recover
after retrying the number of times given by the “au” command. NOTE:
an overload error on any motor, if enabled, will execute error recovery.

Example:
1. Enter /1s13p1202n520R. This sets error recovery script to send

“1202” on every recovery.

/1s12p1201R sets final script to send “1201.”
2. /1aM1m5h5z0aC50au5u3aE12800L100n520R sets h= 5 and m=5 so

that we can stall the motor easily.
3. Setup encoder ratio as appropriate: /1aE32000R etc.
4. Zero Encoder and Position Counter /1z0R
5. Set au = 5 so that 5 retries max are allowed
6. Set u = 5 so that program 13 is run a maximum of 3 times.
7. Set n =520 = n8 + n512 so that stored program 13 will be issued on

error condition.
8. Now move the motor shaft so that the motor tries to correct 5 times

and then gives up.

 Page 41 of 63

Appendix 8. Position Correction Mode and Overload Report Mode

9. After the 5th retry the motor will execute stored program 13 and will
attempt to send a 1202 on the 485 bus. Then the feedback turns on
and 5 more tries are made. If the motor is held stalled, the 1202 will
be sent 32 times followed by a 1201 as the final recovery script ,
stored program 12, is run.

Typical reasons that the following error is too great:

 “m” value (current) set too low.

 “L” value (acceleration) set too high for torque available from motor.

 “V” value (velocity) set too high for torque available from motor.

 Physical obstruction, or excessive friction.

Table 2. Position Correction Mode Commands

Command Operand Description

aC
1-65000
(50)

When in position correction mode, set distance allowed to move
before the motor corrects using encoder feedback.
E.g. /1aC100R
See Appendix 8.

aE
1000-10^6
(1000)

Set Encoder ratio.
This sets the ratio between the encoder ticks/rev and the
microsteps/rev for the motor. E.g. /1aE12500R
See Appendix 8.

au
1-65000
(10)

Set Overload Timeout. This sets the number of times the move is
retried in case a move stalls. E.g. /1au10000R
 When the au retries are exhausted, the drive will drop out of
feedback mode (n8) and report Error 9 (overload)

x
1-10000
(10)

Set Integration period (V 6.99 +) A fine position correction integrator
algorithm is engaged once the major move is completed to zero out
any small residual position error. The speed of this correction is
affected by the “x” integration period value. /1x10R is default. Smaller
values of x correct faster but may lead to oscillations E.g. /1x3R

n
0-4095
(0)

Bit3 : /1n8R enables Position Correction mode. See Appendix 8.
Bit4 : /1n16R enables Overload Report mode.
Bit9 and Bit10: When set, these bit will execute one of the stored
programs 13, 14, or 15 whenever the feedback shuts down the drive
due to an overload or an error. (The “au” retries are exhausted. See
Appendix 8.
/1n512R executes program 13.
/1n1024R executes program 14.
/1n1536R executes program 15.

 zsac
1-65000
(50)

Sets the final error allowed by the fine position correction
algorithm.

u
1-65000
(0)

In Version 6.99 and greater, sets the number of times error
recovery scripts 13, 14, or 15 are run prior to calling upon final
recovery script 12.

Page 42 of 63

 Appendix 9. Analog Inputs and Analog Feedback

Appendix 9. Analog Inputs and Analog Feedback

Analog Inputs

The four inputs of the EZStepper® are all ADC inputs.

 The ADC values can be read via RS485, E.g., /1?aa<CR>. These
values are on a scale of 0-16368 as the input varies from 0-3.3V. The
inputs as shipped are good to about 7 bits, but can be made to be
better than 10 bits with the removal of the input overvoltage
protection circuitry (call factory for details).

 The threshold upon which a digital “one” or “zero” is called can be
varied with the “at” command and affect the Halt H command or
Skip S command.

Example: /1at309999R<CR>. This sets the threshold on input 3 to
09999. Note that it is necessary to insert leading zeros after the input
number (3), since the threshold value must always be entered as five
digits (00000-16368).

 The thresholds for all four inputs can be read back with the
/1?at<CR> command. The units have a default threshold value of
6144 (1.24V).

 It is possible, for example, to regulate pressure by turning a pump on
or off depending on an analog value read back, by designating the
threshold of the One/Zero call as the regulation point. E.g.
/1at308000gS03P1000G0R.

 A potentiometer can be placed as shown in the wiring diagram, and
its position read back via the /1?aa<CR> command. Note that the
supply provided (which normally drives an LED) has 200 ohms in
series with 5V, so the use of a 500-ohm potentiometer will give a
range of almost 0-3.3V range on the inputs.

 Page 43 of 63

Appendix 9. Analog Inputs and Analog Feedback

Potentiometer Position Command

Potentiometer 2 (see wiring diagram) can be used to command the
position of the main axis only (Motor 1). The value read back on
potentiometer 2, from 0-16368, is multiplied by the multiplier “am” and
then divided by 256. Then an offset given by “ao” is added. The motor
will use this number just as if it had been commanded by a /1A12345R-
type command. Further, there is a “deadband” command, “ad”, which
sets a dead band on the 0-16368 potentiometer value read back such that
a value outside this deadband must be seen before a command is issued
to cause a move.

The command /1aM1ao100ad100am1000n8192R<CR> enables
potentiometer command mode.

Stepper position = ((analog value from potentiometer/ 256) x (“am”
multiplier)) + (“ao” offset value)

Use 500-ohm potentiometer. (see wiring diagram)

Supply pin of potentiometer already has 200 ohms in series on the board
to 5V

Value from potentiometer = 0 to 16368 for 0-3.3V on wiper.

E.g. /1ao1228R<CR> sets ao offset to 1228. Default is 0.

E.g. /1am256R<CR> sets am multiplier to 256. Default is 256.

E.g. /1ad100<CR> sets the deadband in microsteps to 100. Default is
50).

Page 44 of 63

 Appendix 9. Analog Inputs and Analog Feedback

Potentiometer Velocity Mode (joystick mode)

This is available in firmware version 6.7+

Potentiometer 2 (see product wiring diagram) can be used to command
the velocity of the main axis only (motor1). The value read back on
potentiometer 2, from 0-16368, is multiplied by the multiplier “am” and
then divided by 256. The motor uses this number just as if it had been
commanded by a V command.
1. Use /1n65536R to enter velocity mode.

Once in this mode, /1z0R will set zero velocity to the current position
on the potentiometer.

2. Issue /1P0 to start an endless move based on the velocity as read
from the potentiometer.

 /1zxxxR, where xxx is non zero, will set zero to that value of the
potentiometer.

 ad sets the dead band on the potentiometer about mid scale.

 am sets the multiplier where:

velocity in microsteps/sec or encoder ticks/sec = [(potentiometer
value(0to16368) – (potentiometer zero value from “z”
command) - (“ad” deadband value/2)] x (am/256)

So,

/1ad100am1000n65536z0P0R starts the mode.

to terminate, type

/1n0<CR>

/1T<CR>

The actual velocity can be read back by /1?V<CR>.

It is also possible to use the potentiometer to set the magnitude of the
velocity and Switch1 input to be the direction of the velocity. Bit 7
Enables this.

/1ad100am1000n65664z0P0R starts the mode. (65664=65536+128)

(Please request V6.998 or later firmware for this feature.)

Further, it is possible to know if the shaft is following the commanded
velocity, by using a shaft encoder for feedback and setting the encoder
ratio (aE) and the following error (aC), and setting n16 mode to report
overloads 65552 = (65536 + 16).

/1ad100aC400am128n65552aE12800z0P0R

If the potentiometer velocity mode is to be used with limits, the limits
can be switched to the two switch inputs, so as not to interfere with the
potentiometer. The command to do this is /1an16384R.

Example: /1ad100am1000an16384n65538z0P0R switches limits to the
alternate inputs, and enables limits (65536 +2 = 65538).

 Page 45 of 63

Appendix 9. Analog Inputs and Analog Feedback

Beginning in firmware version 7.05C, in the mode where the direction of
motion is set by switch 1: if this mode is enabled with the limits also
enabled, Input 3 opto 1 becomes the direction line. So Switch 1 and 2 can
then be made limits with the an16384 command. The result is joystick
mode with limits enabled and TTL direction input.

/1ad100am1000an16384n65666z0P0R

(65666=65536+128 +2)

note that the f1 command can reverse the polarity of the limits if needed.

/1f1ad100am1000an16384n65666z0P0R

Potentiometer Position Feedback

This is available in Firmware V6.7+.

Potentiometer 1 can be used as an encoder for the main axis only (Motor
1). The value read back is from 0-16368.

NOTE: Please read Appendix 8 on encoder feedback mode first.
Operation in potentiometer position feedback mode is identical to
encoder feedback mode except that the potentiometer acts as an encoder
which generates positions between 0 and 16386.

The command /1N3R designates Potentiometer 1 as the encoder (in place
of the quadrature encoder).

To use this mode:
1. Wire a 500-ohm linear taper potentiometer to the Potentiometer 1

position.
2. Connect the motor shaft to the shaft of the potentiometer, such that a

move in the positive direction for the motor increases the value read
from the potentiometer using the /1?aa command.

3. Turn the potentiometer all the way to zero by issuing a D command,
e.g. /1D1000R.

4. Issue /1z0R to zero the motor position.
5. Issue /1N3R to enable the potentiometer as encoder .
6. Move motor by issuing P commands until it is about ¾ of

potentiometer range.
7. Issue /1aE0R to automatically work out the “encoder ratio” for the

potentiometer.
8. Issue /1n8R to enable feedback mode.

Note that if the motor shaft is forced, a correction will be issued to return
the motor to its original position.

If shaft oscillates at some positions, this may be because of a nonlinearity
in the potentiometer. Try increasing the dead band set by the aC
command. Or it could be because the zero position was not set correctly.
Another cause of oscillations is a “scratchy” potentiometer. Try adding a
0.1µF capacitance between the wiper terminal and ground.

NOTE: To start feedback at a non-zero potentiometer position, read the
current potentiometer value (position) with /1?aa , say it’s 2345, then
issue /1z2345N3n8R.

Page 46 of 63

 Appendix 9. Analog Inputs and Analog Feedback

Example: (V6.7+) :

/1aM1z0aC50h40m40au100aE32000V1000N3n8R

 Example (V6.99+ ,with fine position correction):

/1aM1z0aC50ac10x10h40m40au100aE32000L100N3n8R

NOTE: See Appendix 8 for parameter explanations.

To exit this mode, type /1n0R followed by /1T.

 Page 47 of 63

Appendix 10. Sinusoidal Scan

Appendix 10. Sinusoidal Scan

Sinusoidal scan requires firmware V6.7+.

The EZHRXXEN models can be commanded to automatically scan in a
sinusoidal profile.

 The amplitude of the scan motion is set by the “aA” command.

Example: /1aA51200R sets a peak-to-peak amplitude of 51200
microsteps (one revolution on a 1.8-degree stepper). Any change in
amplitude will be made as the sinusoid goes through the zero
crossing.

 The frequency of the scan is set by the “aW” command.

Example: /1aW1000R sets frequency to be f= (X)*20000

/ (1024*65536), where X is 1000 in this example.

To exit from this mode, issue a zero amplitude /1aA0R.

Page 48 of 63

 Appendix 11. Daughter Cards

Appendix 11. Daughter Cards

The EZHR17EN model can accept one of four daughter cards:

 Dual Axis Stepper Daughter Card (Requires firmware V6.79 or later)

 Bidirectional PWM Current Mode Drive Daughter Card

 Bidirectional PWM Voltage Mode Drive Daughter Card

 Logic Output Daughter Card

Dual Axis Stepper Daughter Card (firmware V6.79 or later)

The Dual Stepper Daughter card is a 1 Amp 1/16th-step capable daughter
card.

NOTE: this card only works from a 10V-30V supply.

To issue commands to the daughter card first issue the command /1aM2R
(Motor 2). All subsequent commands go to the daughter card motor.
/1aM1R returns to the primary axis. E.g. /1aM2V10L1A1000A0R

The second axis can run full, half, quarter, and 1/16th step only
(/1aM2j16R etc).

The default resolution is half step.

The second axis daughter card is rated at One Amp.

The second axis homes to Switch 1, and uses Switch 1 and 2 as its limits
(/1n2R mode).

It is possible to home to the index on the channel 2 encoder by issuing
the command /1aM2N2R. Then the second axis will home to Opto2,
where the second axis encoder index is connected.

NOTE: Beta versions of firmware before V6.74 always homed to Opto2.

The second axis and the second encoder can be zeroed by issuing
/1aM2z0R

The /1?0 and /1?8 position queries report the position of the current axis
and encoder selected by the last /1aM2R or /1aM1R command

Simultaneous motion: Beginning with firmware V6.78, it is possible to
run both axes simultaneously in full encoder feedback mode. It is
possible to issue A,P, and D commands simultaneously to both axes,
(only these three commands (A, P, and D) work with the following
examples. Commands are separated by commas.)

/1A1000,-1000R will move axis one to 1000 and axis two to –1000.

/1P-1000,1000R will move axis one backwards by 1000 and axis 2
forward by 1000.

Dual axis encoder feedback mode example:

Both axes can simultaneously feed back from encoders or even
potentiometers.

 Page 49 of 63

Appendix 11. Daughter Cards

/1aM1j256au10000aE32000n8R sets up the encoder feedback mode for
axis 1.

/1aM2j16au10000aE4000n8R sets up the encoder feedback mode for
axis 2.

Note that, when feedback is used, the encoder inputs use up the limit
switches for the second axis. In case the drive needs to be “homed” when
in feedback mode, one of the other inputs will need to be used, and a
manual home routine written.

Manual homing can be done by sampling one of the inputs.

E.g., use stored program zero as an escape from an endless loop:

 /1s1R (Store nothing in program 1.)

 /1gD1S04e1GR (Go backwards in an endless loop until input 4 goes
high.)

Bidirectional Current Mode Drive Daughter Card For I/O
Function

The bidirectional current mode drive daughter card can drive a bipolar
current, for example to operate a bidirectional latching relay.

/1l80R sets the current in this drive to 80% for example. (lower case “L”)

/1O1R sets the current flow one way.

/1I1R sets the current flow in the other direction .

It is not necessary to issue dual axis commands such as aM2 when using
this daughter card.

Bidirectional Drive Daughter Card For DC Servo

Requires firmware version 7.06+.

The bidirectional daughter card can drive a bipolar current, and hence
can be used to control a DC motor with full feedback servo function.

A DC motor with its encoder connected to the secondary encoder input
(as shown in the product wiring diagram) will allow Axis 2 to be a DC
servo.
1. Issue /1N8R to enable this mode.

2. Connect as shown in the wiring diagram and issue the command
/1N8aM2 A10000A0R.

The motor should rotate back and forth. If the motor spins out of
control, reverse the motor leads (or reverse the encoder AB leads)
and try again.

PID values can also be changed with the w x and y commands,
w x y = P I D.

Page 50 of 63

 Appendix 11. Daughter Cards

Bidirectional Voltage Mode Drive Daughter Card For I/O
Function (-PW)

The Bidirectional Voltage Mode Drive Daughter Card produces a bipolar
PWM voltage, for driving resistive loads or a DC motor with open-loop
voltage. Commands are the same as described above for the bidirectional
current mode daughter card.

Logic Output Daughter Card

There are four logic (TTL) signals that come out of the daughter card via
the miniature DSUB on the main board. These have been put through
24mA-capable drive chips and made available on a connector by this
daughter card. The signals respond to commands designed for the other
daughter cards, and thus can, for example, be used to drive an external
drive.

The four logic signals are:

 Step – step pulses that are approx 1µS wide are present when Axis 2
moves.

 Direction – High/low level on this pin sets the direction of motion on
axis 2. This can also be modified by the O/I command.

 Current PWM – 20KHz PWM whose duty cycle responds to
commands that set current E.g. “m”, “h” for axis 2 , and “l” for the
bi-directional daughter.

 Step resolution – activated by the j2 /j16 command.

Input Current Consideration When Using Daughter Cards

Note that the input fuse on the EZHR17EN is set to 2A, depending on
the daughter card and the ratio of input voltage to the load. The fuse may
be increased to up to 4A. Call factory for details.

Measure the input current under full load to see if it is necessary to do
this. Typically the input current is much less than the motor current by
the ratio of the motor voltage to the supply voltage (conservation of
power), the drive essentially acting as a switching supply.

 Page 51 of 63

Appendix 12. On-the-fly Parameter Change

Appendix 12. On-the-fly Parameter Change

The EZHR17EN firmware version 6.9981 and later allows on-the-fly
position, velocity, and acceleration change. This allows virtually any
trajectory to be generated.

Once moving, commands can be issued ONE AT A TIME without the
“R.”

 /1A10000000R<CR> will start the move.

 /1V10000<CR> will change the velocity while moving.

 /1A0<CR> will make the drive automatically decelerate and then
head back to zero.

For example: a P200 command, if issued while moving, will cause the
motor to go 200 steps from the current position (not final target).

A, P, D, L, and V can be changed on the fly.

Page 52 of 63

 Appendix 13. Addressing More Than 16 Motors On Same Bus

Appendix 13. Addressing More Than 16 Motors On
Same Bus

Table 3. Address Bank Selection (V6.7+)

Basic
Command

(case
sensitive)

Subset Description

aB

Allows up to 48 drives to be addressed by adding 16 or 32 to the
value of the address switch.

CAUTION: Use this command ONLY if you have more than 16 motors
on the bus. Else DO NOT use it.

aB49520

Sets address bank to 0-15 (normal default mode.

aB49521

Sets address bank to 16-32 (uses ascii 61-70 for addressing).

 aB49522 Sets address bank to 33-47 (uses ascii 71-7f for addressing).

 /_aB49520 Globally sets all addresses to bank zero. Issue if bank is unknown.

Table 4. Binary Address Selection (V7.02+)

Basic
Command

(case
sensitive)

Subset Description

aB

NOTE: Use this command ONLY if you have more than 16 motors on
the bus. Otherwise DO NOT use.
Sets the address of a device to any binary number between 0 and
127 decimal. XXX will be the number in decimal.
For example /1aB496065R sets the address of the device to 65, which
is “A” in ascii. After sending this command, further communication with
the device is by using “A” as the address. The device now responds to
/A&.
Typically, this command would be stored in the EEPROM, for example
/1s0aB496065R.

 _aB49520R
Globally sets all addresses to bank zero. Issue if address is lost.
NOTE: The underscore “_” global character (decimal 095) is not
allowed with the aB496XXX command.

 Page 53 of 63

Appendix 14. Encoders and Step/DIR Pulse Input

Appendix 14. Encoders and Step/DIR Pulse Input

The EZHR17EN model has dual encoder inputs. Any quadrature encoder
with AB and (optional) index input is acceptable. In addition, step and
direction style position counting is also supported on the secondary
encoder.

Read-Only Mode

In this, the simplest mode, the encoders are simply read back.

The command /1?8 reads the primary encoder on the 5-pin connector,
and /1?10 reads back the secondary encoder on the 8-pin connector. The
primary encoder is always in quadrature encoder mode and expects
quadrature pulses on the AB lines. The secondary encoder can be placed
in quadrature encoder or in step and direction counting mod, depending
on whether or not /1n32R mode is enabled.

Additionally, 1aM1R and /1aM2R switch back and forth between the
primary and secondary motors; and /1?8 reads back the primary encoder
when in aM1 mode, and the secondary encoder when in aM2 mode.

Encoder/Step and Direction Following Mode

In this mode, the motor takes the count from the secondary encoder and
uses this count as a commanded position. The count can come in from
another AB quadrature style encoder, or from step and direction pulses.

1. Select AB or step and direction using /1n32R etc.

2. Turn on “Motor Slave to Encoder2” by issuing /1n64R.

Examples: /1n96R (96=32+64) enables step and direction mode and
slaves the motor to it. /1n64R enables the encoder mode and slaves the
motor to it.

The input step count (readable by /1?10) is related to the motor position
by the following relationship: stepper position = (“am” multiplier / 256)
x (step and direction count or encoder count).

Counts are in microsteps set by the j command.

Main Axis Encoder Feedback Mode

The main axis can use the primary encoder for feedback and the
secondary encoder for “command.” Please see the section on encoder
feedback.

Page 54 of 63

 Appendix 14. Encoders and Step/DIR Pulse Input

Dual Axis Feedback Mode

The main axis can use the primary encoder for feedback and the second
axis can use the second encoder for feedback. Please see the section on
Dual Axis.

Electrical

Please see the appropriate product wiring diagram for wiring details.

The encoder(s) must draw a total current of <100mA from the 5V pin.

Encoders must have 0.2V Low to 4V High swing at the input of the
connector.

 Page 55 of 63

Appendix 15. Jog Modes and Limit Switches

Appendix 15. Jog Modes and Limit Switches

Jog

The EZHR17EN can be placed in a mode that will allow the two switch
inputs to “Jog” the motor backwards and forwards. The command for
this is /1n4R. Once issued, the motor can be moved by pressing switch 1
or 2. Internally these inputs are “pulled up” with 10K ohms to 3.3V. A
closure to ground is all that is required.

Note that these are inputs 1 and 2, and that the status of the switches can
be read via firmware by /1?4. This command returns a binary number
between 0-15, which represents the status of the four inputs.

Limit Modes

The EZHR17EN uses the two opto inputs as limits. These are inputs 3
and 4. It should be noted that these inputs are general-purpose inputs and
can be driven by switch closures, etc., or any device that produces a
voltage change. The inputs are actually ADC inputs, and the One/Zero
threshold can be set by the “at” command.

Input 3 is the lower limit and also the home switch. Input 4 is the upper
limit. Both limits are simultaneously turned on by the /1n2R command.

The default expects optos which are low when away from the limit. This
polarity can be changed by issuing /1f1R, for example when normally
open switches are used for limits. (NOTE: normally closed switches are
better for limits, since any disconnect of the wires will shut down the
motion). When n2 mode is engaged, the motor will not move in the
direction in which a limit is active, but will back out of the limit.

In V 6.998 and later firmware, the limits can be moved to the switch
inputs 1, 2 if desired by issuing the command /1an16384R.

Note that limit switches can be used to kill moves, e.g.
/1n2gA100000A0GR will loop between A100000 and A0, but if say the
positive limit is cut during the A100000 then that command is terminated
and the A0 command is run.

Noise Considerations

The inputs are relatively high impedance at 10K ohms and will pick up
noise if bundled with the motor wires, etc. For long cable runs, each
input line should be shielded. The addition of a 0.1µF ceramic capacitor
from the input to ground at the board connector may be an alternative to
shielding, but may slow the response.

Page 56 of 63

 Appendix 16. S Curve

Appendix 16. S Curve

NOTE: S-curve acceleration is available beginning with special beta
release firmware version 7.21.

This acceleration is useful for moving fluids, for example where the
fluids will not “slosh” at the end of the move.

The S curve mode is turned on by issuing a non zero “jerk” value. This is
done by issuing the aj command.

Example: /1aj1V51200P10000R

For smoother motion in S curve mode, the second axis computation can
be turned off and the first axis computation run twice as often if the
command /1N32R is issued. This will give better S curve performance at
high speed.

Setting the aj value to 0 will turn this mode off. This mode only works
for finite A, P and D moves. On-the-fly parameter change is not allowed,
since the entire profile is pre-computed in the S-curve mode.

 Page 57 of 63

Appendix 17. Inputs and Outputs

Appendix 17. Inputs and Outputs

Table 5. Input and Output Commands

Command

(case sensitive)
Operand Description

NOTE: The EZHR17EN, in addition to driving the motor and reading two encoders, has a total of
seven inputs and five outputs.

ANALOG INPUTS

All four Inputs are ADC, and can be read and acted upon by the program. Please see Appendix 9.

?aa

Reads back all four Input ADC values.
E.g. /1?aa<CR>
The readback order is channels 4:3:2:1

In the EZ4AXIS, additional /1?aa1 or /1?aa2 or /1?aa3 or
/?aa4 reads back the analog values on the home flag
connectors for the respective axis.

at

100000 to
116368
200000 to
216368
300000 to
316368
400000 to
416368
(6144)

Sets the threshold upon which a “one” or “zero” is called
for each of the four channels.
The first numeral represents the channel number. The
following 5-digit number, which can range from 00000-16368,
represents the threshold on a scale from 0-3.3V. The default
value for all four channels is 6144, which represents 1.24V.

Changing the threshold allows the H and S commands to work
on a variable analog input level. This can be used, for example
to regulate pressure to a specified level by turning a motor
on/off at a given input voltage.

Example: /1at106144R sets the threshold of channel 1 to
6144. Note that leading zeros after the channel number are
required for the threshold value to maintain five digits plus the
channel number.

?at
Reads back the thresholds for all four channels.
The readback order is channels 4:3:2:1 E.g. /1?at<CR> to
read back channel 1.

DIGITAL INPUTS

? 4

Returns the status of all four inputs, 0-15 representing a 4-
bit binary pattern. /1?4
Bit 0 = Switch1 Bit 1 = Switch2
Bit 2 = Opto 1 Bit 3 = Opto 2

? a4

Returns the status of all four inputs, plus the value of the
primary encoder inputs, read as digital I/O bits 0-127,
representing a 7-bit binary pattern. /1?a4
Bit 0 = Switch1 Bit 1 = Switch2
Bit 2 = Opto 1 Bit 3 = Opto 2
Bit 4 = Encoder CHA Bit 5 = Encoder CHB
Bit 7 = Encoder Index

DIGITAL OUTPUTS

J
0-3
(0)

On/Off Power Driver – Interpret as 2-bit binary value.
3=11= Both Drivers On, 2=10=Driver 2 on, Driver 1 Off etc.

Page 58 of 63

 Appendix 18. EZ4AXIS Special Commands

Appendix 18. EZ4AXIS Special Commands

The EZ4AXIS Four-Axis Controller/Driver follows the general
architecture described in this document.

The following commands have been implemented. These commands are
as described earlier in this manual: A,b,B,
aB,c,D,e,f,g,G,H,J,p,P,K,L,aM,M,n,N,an,s,at,v,V,h,m,z,Z

Some commands can be issued to the currently selected motor, or to all
four motors simultaneously.

To move one motor at a time

/1aM1A1000A0R

/1aM2A1000A0R

/1aM3A1000A0R

/1aM4A1000A0R

Once an axis is selected, all subsequent single-axis commands and
queries will correspond to that axis:

/1aM4R Selects Axis 4

/1A1000R Moves Axis 4 to position 1000

/1?0 Retrieves Axis 4 position

/1L10R Sets Axis 4 Acceleration

To move all motors simultaneously

/1A1000,1000,1000,1000A0,0,0,0R

Note that motors will wait until all have completed their motion.

To only move certain axes, omit the number in the non-moving axes
(firmware V7.04).

Example: /1A1000,,1000,A0,,0,R will only move axes 1 and 3.

The following commands can only be issued to all four axes
simultaneously:

/1L100,100,100,100R Set Accn.

/1V1000,1000,1000,1000R Set Velocity.

/1h10,10,10,10R Set hold currents.

/1m30,30,30,30R Set move (m) currents.

/1P1000,-1000,1000,-1000R Relative forwards move (note negative
numbers allowed)

/1D1000,1000,1000,1000R Relative backwards move

Note that all other commands (e.g., Z command) require individually
selecting the motor and issuing the command /1am3Z100000R.

 Page 59 of 63

Appendix 18. EZ4AXIS Special Commands

On-the-Fly parameter change

The velocities accelerations and target positions can be changed “on the
fly.” This requires V7.05G firmware.

This can be done for one motor (currently selected axis) or for all 4
motors.

Examples:

/1V2000R (no R required if in motion) will change the velocity of the
currently moving axis.

/1V1000,2000,3000,4000 will change the velocities of all four axes while
in motion.

 /1A1000,2000,3000,4000 will change the targets of all four axes while
in motion.

/1A1000,,1000, will change the target position for axes 1 and 3 while
running.

NOTE: The on-the-fly mode allows truly independent control of the
motors, as opposed to a stored program mode where drives will wait for
each other to reach a coordinate.

Home inputs status

The status of the Home inputs can be read:

/1?aa1

/1?aa2

/1?aa3

/1?aa4

Coordinate mode and Semi-Independent mode

/1an16R . If bit 4 of the “an” command is zero (default), the device acts
in coordinate mode, where all axes will wait for the others to get to the
coordinate before executing the next command. If bit 4 is set to one, the
next command is allowed to start before all motors finish the current
command. However, the command following the next command will not
execute until the first command is exited by all motors. This applies to
commands stored in a program only, commands sent by the computer
will be accepted at any time as an on the fly parameter change.

NOTE: any multi-axis command will reset the default motor to Motor 1.

Page 60 of 63

 Appendix 18. EZ4AXIS Special Commands

Exceptions to main command set

 The EZ4AXIS drive is always in 1/16th step mode.

 The EZ4AXIS has a max V of 59900

 The EZ4AXIS equation for accn (acceleration) is:

Acceleration in microsteps / sec^2) = (L value) x
(100,000,000/65536). For example, if V=10000 and L=1, it will
require 6.5536 seconds to reach final velocity.

 /1?aA reads back positions of all four motors (requires V7.50 or
higher firmware).

 /1an65536 puts axes 1 and 2 into linear interpolation mode, where
the speed of the faster axis is slowed such that both axes arrive at the
destination at the same time. (Note: this mode is active only with the
‘A” command.)

Issue commands such as /1an65536A1000,2000R. Omit axes 3 and
4 (requires V7.50 or higher firmware)

 /1?aV reads back velocities of all four motors (requires V7.50 or
higher firmware).

Halt and Skip on status of limit switches

The EZ4AXIS drive, in addition to Halt and Skip on the 4 primary
inputs, can also Halt and Skip in response to the status of the limit
switches. The normal 2-digit HXX command or SXX command is
extended to 3 digits, with the most significant digit being the I/O block /
axis number. The commands are:

/1H101P100R – Halt for a zero on block 1 input 2.

/1H211P100R – Halt for a one on block 1 input 1.

Etc. (16 possibilities for Halt and 16 possibilities for Skip)

Reading back encoder inputs as I/O

In addition to the /1?4 command, which reads back the binary value of
the four main inputs as a number from 0-15 for bits 3,2,1,0, an additional
command (/1?a4) has been implemented. This adds bits 7,6,5 to yield a
number from 0-127. The additional bits are bit 6 (64), the index input,
Bit 5 (32), the middle pin on the encoder connector labeled CHAN A,
and Bit 4 (16), the end pin on the encoder connector labeled CHAN B.

Home Flags

 Each motor has its own set of home flags; these are on the 6-pin
connectors. The polarity of each flag can be changed individually, e.g.,
/1aM3f1R etc

 Page 61 of 63

Appendix 18. EZ4AXIS Special Commands

Programmable Threshold on Axis Inputs

Similarly to the “at” threshold command described elsewhere in this
document, the threshold of the I/O associated with each axis can be
programmed:

Simply add the axis number to the beginning of the command. For
example, to set axis 4 upper limit to 10000, issue /1at4210000R (note
seven numerical digits).

NOTE: in prior firmware versions, all threshold were simultaneously
programmed when input 4 on the 8-pin connector was set using the
/at4XXXXXR command.

All four axes’ thresholds can be read back by issuing the /1?aat
command. The order of readback is 12, 11, 22, 21, 32, 31, 42, 41
(requires V7.50 firmware).

Page 62 of 63

 Appendix 18. EZ4AXIS Special Commands

 Page 63 of 63

Current and voltage ratings and motor selection

The EZ4AXIS will drive at 1A per phase when m=50 (peak of sinusoidal
drive waveform) with no restrictions.

However, at 2A per phase (peak of sine wave) when m=100, the drive
can only be operated at about 25% move time with rests in between at a
low hold current. Typically the move is limited to a maximum of
approximately one minute continuous. This restriction is purely thermal.

In order to exploit the full capability of the EZ4AXIS, the motors must
be of a low resistance (less than 5 ohms or so) and the supply to the
drive should be about 4X the motor voltage. So use a 6V motor with a
24V supply. This is necessary because the maximum input current from
the power supply is restricted to 4A, so input power is about 30V x 4A =
120W. The drive will step down the voltage and step up the current,
much like a switching supply. So when using 6V motors, a total of
120W/6V= 20A is available to drive the eight phases of the four motors.
Thus it is possible to get two amps per phase on four motors with the
input current being only four amps at 24V or 30V. It is not possible, for
example, to run four 24-ohm coil resistance motors at 1A because this
would require a total of 8A input current at 24V, so motor selection is
critical for optimizing the capability of the drive.

Typically if using the motor at high current and high duty cycle (move
time), the drive must be heat sinked against an aluminum surface with a
very thin layer of a Bergquist type heat sink foam (BER225 on
digikey.com), or forced-air cooled. Typically, if the drive gets too hot,
the motors will start “clicking” on and off. The drive should be operated
well away from this region for long life.

If running high current on two motors, select non-adjacent channels (1
and 3, for example) to distribute the heat load within the board.

NOTE: AllMotion® provides a heat sink for this drive. Please see the
stepper accessories section of the AllMotion® website.

