Subaru UM 2025 [O15]

MOIRCS confirmation of super-Eddington accretion in an extremely

X-ray loud radio quasar at z=3.4 in the eROSITA/eFEDS field
(Submitted to ApJ)

Sakiko Obuchi (/J\#] #75 F)

Waseda University

Collaborators :

Kohei Ichikawa (Waseda University), Ingyin Zaw (NYUAD), Bovornpratch Vijarnwannaluk (ASIAA), Andrea Merloni

(MPE), Yuxing Zhong (Waseda University), Satoshi Yamada (Tohoku University), Kosuke Takahashi (Tohoku University),

Naoki Matsumoto (Tohoku University)
I



Motivation

Radio AGN
« AGN : gas accreting event into supermassive black holes (SMBHs)

 10% of AGN are radio AGN = key population for AGN feedback
* radio AGN : known to be low Eddington ratio in local universe (e.g., Ivezic+02, Ho 2008)

Credit: STScl

VLA/FIRST wide-area radio survey eROSITA eFEDS wide-area X-ray survey
(v=1.4 GHz, f\iim=1 mly, >104 deg?) (0.5-2 keV band, 140 deg?)

FIRST Survey Northern Sky Coverage, 2014 December 17

Dec (deg)

“m _  (Helfand+15)

M200s [M2002 2001 W1999 [J1998 W1997

(Brunner+22)
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Discovery of extremely X-ray luminous radio AGN

SN

From the eFEDS-WERGS catalog (Ichikawa+23), we selected spec-z objects with Lo.s-2kev > 1046-0 erg s-1.
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[O15] Sakiko Obuchi
Mgn measurement from Subaru/MOIRCS J-band spectrum

SO

We conducted J-band spectroscopic observations to cover the MglIA2800 emission line
(S25A-0040N; 2025/3/15)
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Mgn measurement from Subaru/MOIRCS J-band spectrum

SO

We conducted J-band spectroscopic observations to cover the MglIA2800 emission line
(S25A-0040N; 2025/3/15)
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[O15] Sakiko Obuchi
Mgn measurement from Subaru/MOIRCS J-band spectrum

SO

We conducted J-band spectroscopic observations to cover the MglIA2800 emission line
(S25A-0040N; 2025/3/15)
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Mgn measurement from Subaru/MOIRCS J-band spectrum

[O15] Sakiko Obuchi

SO

We conducted J-band spectroscopic observations to cover the MglIA2800 emission line
(S25A-0040N; 2025/3/15)
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Mgn measurement from Subaru/MOIRCS J-band spectrum

SO

We conducted J-band spectroscopic observations to cover the MglIA2800 emission line
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[O15] Sakiko Obuchi
AGN bolometric luminosity: X-ray-derived vs UV-derived
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AGN bolometric luminosity: X-ray-derived vs UV-derived
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AGN bolometric luminosity: X-ray-derived vs UV-derived
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[O15] Sakiko Obuchi
AGN bolometric luminosity: X-ray-derived vs UV-derived

49
~ A Neda=1
X-ray-derived Lpoi W
. (Aeaax= 12.8) * )4
; //th.
=47 UV-derived Lool s wg????‘”
?0 (AEdd,UV= 1.4) N
E VA P
Qg 46 o' \)00 ‘
< — 9
. The X-ray-derived and UV-derived Lo are inconsistent...
- Something is happening in this source??
S T S 0
lOg MBH/M@

()



[O15] Sakiko Obuchi

How unique is this X-ray brightness? — X-ray properties : aox Vs L5004

olox : the ratio of UV to X-ray luminosities (Tananbaum et al. 1979)
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[O15] Sakiko Obuchi
How unique is this X-ray brightness? — X-ray properties : aox VS L2s00A

olox : the ratio of UV to X-ray luminosities (Tananbaum et al. 1979)
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How unique is this X-ray brightness? — X-ray properties : aox Vs L25004

olox : the ratio of UV to X-ray luminosities (Tananbaum et al. 1979)
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What causes the X-ray excess? — aox transition with an accretion burst

The dramatic flux variation of a changing-look AGN driven by an accretion burst shows aox transition.
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What causes the X-ray excess? — aox transition with an accretion burst

The dramatic flux variation of a changing-look AGN driven by an accretion burst shows aox transition.
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What causes the X-ray excess? — aox transition with an accretion burst

The dramatic flux variation of a changing-look AGN driven by an accretion burst shows aox transition.
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What causes the X-ray excess? — aox transition with an accretion burst

The dramatic flux variation of a changing-look AGN driven by an accretion burst shows aox transition.
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What causes the X-ray excess? — aox transition with an accretion burst

The dramatic flux variation of a changing-look AGN driven by an accretion burst shows aox transition.
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What causes the X-ray excess? — aox transition with an accretion burst

The transition of 1ES 1927+654 lasted for 3 years. — What is the timescale of the transition in our target?
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What causes the X-ray excess? — aox transition with an accretion burst

The transition of 1ES 1927+654 lasted for 3 years. — What is the timescale of the transition in our target?
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What causes the X-ray excess? — aox transition with an accretion burst

The transition of 1ES 1927+654 lasted for 3 years. — What is the timescale of the transition in our target?
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What causes the X-ray excess? — aox transition with an accretion burst

The transition of 1ES 1927+654 lasted for 3 years. — What is the timescale of the transition in our target?
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This source may allow us to observe the transitional phase over ~300 yr!
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Summary

Motivation
* VLA/FIRST wide-area radio survey x eROSITA eFEDS wide-area X-ray survey

—— A prominent candidate of super-Eddington AGN w/ radio-jet

Results
o Mpgu=4.40%x108 Msyn Aedd,uv=1.44 [/ Aedgx=12.8 —— super-Eddington AGN w/ radio-jet!

* higher aox = unquenched at super-Eddington —— transitional phase after an accretion burst?

Future works

e confirm the transitional phase from super-Eddington phase to sub-Eddington phase

— Further observations targeting larger-scale structures = past bright phase

e unclear mechanism of the super-Eddington AGNs jet emission

—— Need to know the jet scale by radio observations
25
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AGN bolometric luminosity: X-ray-derived vs UV-derived
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What causes the X-ray excess? — aox transition with an accretion burst

JWST Cycle5 MIRI+NIRSpec observation

a PRISM G235M MIRI
10 wa |OI111]5007 (past 103-4 yr)
| ¢ .~ dust excess
10° rd e
= “{3 7| excess?— T~o |
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JWST further observations can trace “dust echo” and “ionized gas echo” in the traditional phase
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What causes the X-ray excess? — aox transition with an accretion burst

210) ¢

4 Our Target

1ES 1927+654
changing-look AGN

corona reheating
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Att=0-150 days after the optical outburst, a
TDE enhances the mass accretion rate of the
mner region of the original accretion disk. The
accretion was temporarily super-Eddington,
and the mner disk was a slim disk.

Stage |

Ccor ona

seed photons acc1 etion disk

—

o

black hole

Alter 650 days, the accretion rate went back
to the pre-outburst state, where the disk was
generally thin. Fewer photons were released
by the AGN, allowing the coronal emission to
become hard again. Meanwhile, the corona
reached a new equilibrium state, balanced by
pair production. The disk within corona was
thin disk-dominated.

Stage IV

constant temperature
denser

hotter-when-fainter corona

Atr=150-280 days, an outflow was launched
from the accretion flow. The expanding
photosphere of the outflow had a larger size than
the corona, which cooled down the corona
because of an increase in the gas density.

Stage 11

outflow

At 1= 280-650 days, the accretion rate
dropped because too much of the material from
the TDE had been consumed. Therefore, the
truncation radius decreased because of the
lower radiation pressure. The gas density of the
corona also decreased, so that the luminosity
and temperature both gradually increased. The
disk within corona was slim disk-dominated.

Stage 111

hotter and smaller
imnner disk

shrinking R,

hotter-when-brighter corona

Li+24
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Discovery of extremely X-ray luminous radio AGN

SN

From the eFEDS-WERGS catalog (Ichikawa+23), we selected spec-z objects with Lo.s-2kev > 1046-0 erg s-1.
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Radio and X-ray spectra
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Mgy measurement from UV+optical spectra
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What causes the X-ray excess? — contamination from the jet
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The X-ray emission generally arises from a hot “corona”

(e.g.,Haardt & Maraschi 1991)

‘ for radio-loud quasars...

jet-linked X-rays may contaminate

(Synchrotron self-Compton; SSC or external-Compton; EC ?)

X-ray Emission
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off Disk

Accretion Disk
(infalling material)

Credit; D. Wilkins.
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What causes the X-ray excess? — contamination from the jet
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(Synchrotron self-Compton; SSC or external-Compton; EC ?)
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Even after removing the jet contamination, the X-ray luminosity is still high...
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What causes the X-ray excess? — contamination from the jet

SO

s The X-ray emission generally arises from a hot “corona”
(e.g.,Haardt & Maraschi 1991)

‘ for radio-loud quasars...
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Even after removing the jet contamination, the X-ray luminosity is still high...
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What causes the X-ray excess? — “soft excess” component

New component?

| X-ray spectra

The most similar one is...

“Soft X-ray excess” in super-Eddington NLS1s

1043-; model SE (e.g., Jin+17)
| (Inayoshi+P4)
1042__ ey =0.3 NLS].S = IOW'Z, |OW-MBH (’\’106 MSun)
5 g =1.0
T SECam—t our target — high-z, high-Mpgy (~108 Ms,,)

Even at high-z and with high-Mgy, a “soft excess” component may be required?
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What causes the X-ray excess? — “soft excess” component

super-Eddington NLS1s with the soft X-ray excess

weak reprocessing
and reflection
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Broad-band spectral energy distribution (SED)
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X35b Obuchi et al.

Number density of radio AGNs at z=3.4

Based on the eFEDS survey field and the spec-z bias, we estimate the number density of radio-loud quasars.
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For the UV-based number density, the radio-loud fraction is 57 %, which exceeds the expected threshold 10 %.

The number density of radio-loud quasars at z-3-4 may be underestimated in existing UV selected quasar samples!
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