Current Status of Novel Gratings for Next Generation Astronomical Instruments VIII N. Ebizuka ${ }^{\text {a }}$, T. Okamoto ${ }^{\text {a }}$, Y. Yamagata ${ }^{\text {a }}$, M. Sasakib, I. Tanaka ${ }^{\text {c }}$, T. Hattoric, K. Motoharac ${ }^{\text {c }}$, T. Kodama ${ }^{\text {d }}$, S. Ozakic, W. Aokic, Y. Nakauchic, M. Nishimakif, K. Yamamoto ${ }^{\text {f }}$, M. Okada ${ }^{\text {f }}$ and K. Saikig
${ }^{\text {a }}$ RIKEN, ${ }^{\mathrm{b}}$ Toyota Technological Institute, ${ }^{\mathrm{c}}$ NAOJ, ${ }^{\mathrm{d}}$ Tohoku Univ., ${ }^{\mathrm{e}}$ ISAS/JAXA, ${ }^{\mathrm{f}}$ NALUX Co. Ltd., ${ }^{\mathrm{g}}$ Osaka Univ.
LightSmyth transmission grating for MOIRCS J- and H-band grism

VB (volume binary) grating, $\Lambda=2.36 \mu \mathrm{~m}$, $\mathrm{L} \& S=1: 1, \mathrm{t}=4.5 \mu \mathrm{~m}$. Can be fabricated

Trapezoid grating, $\Lambda=2.36 \mu \mathrm{~m}$
L\&S $=0.59: 0.41, \mathrm{t}=4.5 \mu \mathrm{~m}$, Taper: 7.1° directly by plasma etching on quartz glass.

VB/Trapezoid grating for MOIRCS K-band grism

Volume binary (VB) grating for ALIS of LUPEX

LUPEX: Lunar Polar Exploration Mission, ALIS: Advanced Lunar Imaging Spectrometer.
 $\Lambda=1.43 \mu \mathrm{~m}, \mathrm{t}=2.65 \mu \mathrm{~m}$, $L \& S=1: 1, \quad \theta_{0}=24.8^{\circ}$,
of VB grating.

SEM photograph of VB grating fabricated by anisotropic plasma etching on silica substrate.

Diffraction efficiency of VB grating for ALIS

InGaA detector
Xenics $(20 \times 20[\mu \mathrm{~m}], 640 \times 512$ pix $) \rightarrow$ Sony $(5 \times 5[\mu \mathrm{~m}], 1280 \times 1024$ pix $)$ \rightarrow Design and fabrication of lens became difficult. $\Lambda=1.43 \mu \mathrm{~m}(700 \mathrm{~g} / \mathrm{mm}) \rightarrow 2.0 \mu \mathrm{~m}(500 \mathrm{~g} / \mathrm{mm})$ \rightarrow A novel fabrication method for a VB grating with Tempax glass is developing.

Cast in vacuum $\left(1,100^{\circ} \mathrm{C}\right)$
 in Tempax glass. $1,000^{\circ} \mathrm{C}$.

- Instead of VPH grisms of J and H-band for MOIRCS, we have developed grisms with LightSmyth transmission gratings.
- The VB and trapezoid gratings achieve very high efficiency and wide bandwidth of wavelength.
- Instead of the VPH grism of K-band for MOIRCS, we are developing a VB grism.
- We are also developing a novel fabrication method for a trapezoid grating of MOIRCS K-band grism by means of replication of a Si mold, as a prototype for TMT transmission gratings.
- A prototype VB grating with quartz glass for ALIS have fabricated.
- We are developing a novel fabrication method for a VB grating of ALIS with Tempax glass by using a Si mold. Cast temperature: $1,100 \rightarrow 1,000^{\circ} \mathrm{C}$.

