High Dispersion Spectroscopy of Solar-Type Stars showing Superflares

Yuta Notsu (Kyoto University)

- Satoshi Honda (Univ. of Hyogo, Nishi-Harima Obs.)
- Hiroyuki Maehara (Univ. of Tokyo, Kiso Obs.)
- Shota Notsu (Kyoto Univ.)
- Takuya Shibayama (Kyoto Univ.)
- Takashi Nagao (Kyoto Univ.)
- Daisaku Nogami (Kyoto Univ., Kwasan Obs.)
- Kazunari Shibata (Kyoto Univ., Kwasan Obs.)

Solar flares

- Solar Flares
- Most energetic explosions on the surface of the Sun
- Magnetic energy release
- H α, X-ray emission etc

Ha 10,000K

- Time scale ~ $1 \mathrm{~min}-1$ hour Hida/Kyoto Univ.
\cdot Total energy ~ $10^{29}-10^{32} \mathrm{erg}$
Understanding solar flares is the first step of investigating stellar flares.

Stellar flares

- Young stars or close binary stars often produce superflares. 10-10 10^{6} times more energetic ($10^{33}-10^{38} \mathrm{erg}$) than the largest solar flares ($\sim^{10^{32}} \mathrm{erg}$).

Stellar X-ray Corona

- Such stars rotate fast (10-100 $\mathrm{km} \mathrm{s}^{-1}$) and the magnetic fields of a few kG are distributed in large regions on the stellar surface.

In contrast, the sun slowly rotates
 ($\sim 2 \mathrm{~km} \mathrm{~s}^{-1}$) and the magnetic fields are weak.
(Pallavicini et al. 1981)
\Rightarrow Superflares cannot occur on Sun-like stars $\cdot \cdots$??

Superflares on solar-type stars??

But amazingly, Schaefer et al. (2000) discovered 9 superflares on ordinary solar-type (G-type main sequence) stars with slow rotation!!

- Flare frequency, and the detailed properties of superflare stars are still not clear because of few observations.
- Are superflares really occurring on solar-type stars with slow rotations?
\Rightarrow Our motivation of this research using Kepler spacecraft data.

Superflares discovered by Kepler spacecraft

- We searched for superflares on solar-type (G-type main sequence; $5100<T e f f<6100$, log g >4.0) stars by using Kepler high precision ($<10^{-4}$) photometric data.

Superflares on solar

Hiroyuki Maehara ${ }^{1}$, Takuya Shibayama ${ }^{1}$, Shota I Daisaku Nogami ${ }^{1}$ \& Kazunari Shibata ${ }^{1}$

- Surprisingly, we found 365 superflares on 148 solar-type stars. ※Kepler observes ~80,000 G-type stars.
- Statistical analyses
\Rightarrow Superflares of 1000 times more energetic than the largest solar flares occur once in 5000 years !

What is the cause of

stellar brightness variation?

?? Rotation of a star with large starspots ??

- Brightness variation

Period $\quad \Rightarrow$ Stellar rotational period
Amplitude \Rightarrow Sizes of statspots on the stellar surface

Spot magnetic energy can explain the energy of superflares!?
cf. Shibata et al.
2013 PASJ in press
Is this true??
\Rightarrow High Dispersion
Spectroscopic
Observations

Purposes of Subaru/HDS Observations

(1)Do superflare stars really have large starspots??

We confirm this by investigating the chromospheric activity, using the line profile of Ca II IR triplet lines (8498/8542/8668) and Ha(6563).
\downarrow Core profiles of Call 8542 with different temperature structures \downarrow The core depth of Ca II lines are used as an indicator of Chromospheric activity.

Purposes of Subaru/HDS Observations

(2)Does the brightness variation really correspond to the rotation?

We compare $v \sin i$ (projected rotational velocity) with the velocity estimated from period of the brightness variation.

We can estimate stellar inclination angle (i). Inclination angle is important for estimating the spot sizes from the brightness variation.

(3) Investigating binary fractions of superflares

Measuring Radial velocity (RV) changes
The possibility of orbital motion of close binary systems??
(Generally, close binary systems have large flares.)
Do single stars like the Sun really have superflares??

Subaru/HDS observations of Solar-Type Superflare stars

- S11B-137S (P.I.: Y. Notsu) 2011 Aug. 3, Service Program Pilot study for one superflare star KIC6934317
- S12B-111B (P.I.: Y. Notsu)
- Obs. Date: 2012 Aug. 6-8 (half night)

Sep. 22-25(half night)

- R~50,000, $\quad \lambda: 6100 \sim 8820 \AA$ (Ca II IRT, $H \alpha$)
- S / N ~ 100 @ $8500 \AA$
- Exp time: 1-2h x (2~3)
- 24 superflare stars

22 G-dwarf (5100K<Teff<6000K, log g>4.0) + 2 K-dwarf $10 \leqq 1 \mathrm{mag} \leqq 14$
$0.7<\mathrm{P} \lesssim 20$ (day) Brightness varitaion period

Spectroscopic binary

"Double line Profile Sample

Spectroscopic binary

- Radial Velocity change

(Sample) KIC7902097 Radial Velocity change $\approx 76.7 \mathrm{~km} / \mathrm{s}$

About half of the target stars are binary.

- We will talk about the single stars in the following.

Number of Stars
The number in parentheses is that of the star $\mathrm{P}>10$ day.

Slit Viewe Image of HDS
$\left.\begin{array}{l|c|c|c|c}\hline \text { Teff } & \text { Total } & \text { Single } & \begin{array}{c}\text { Spectroscopic } \\ \text { Binary }\end{array} & \begin{array}{c}\text { Visual } \\ \text { Binary }\end{array} \\ \hline 5600 \sim & 11 & 7(1) & 2 & 2 \\ 6000 \mathrm{~K}\end{array}\right)$

Chromospheric activity (Call 8498/8542)

- As the activity enhanced, the core depth become shallow because of the greater amount of the emission from the chromosphere.
- Chromospheric activity \Rightarrow These stars have large starspots !?

Chromospheric activity ($\mathrm{H} \alpha$)

The core flux of $\mathrm{H} \alpha$ also shows the activity.
($\mathrm{H} \alpha$ line is widely used for the Sun)
The good correlation with the result using Ca II triplet.

Rapidly rotating stars

Rapidly rotating stars show wide line profile.,

We measured " $v \sin i$ " (projected rotational velocity) by applying the method by Takeda et al. (2008)

Slowly rotating stars

Slowly rotating stars (like our Sun) show narrow line profile.

Vsin i error
~ 10\%

Single stars

Ca II 8542

ro error : mainly depend on determination of continuum $(<0.1)^{17}$

Vsin(i) vs Chromospheric Acticvity

-There are correlations between $v \sin i$ and chromospheric activity. Many stars show high activity compared to the Sun.

- Our result is consistent with the previous research about general solar-analog stars by Takeda et al. (2010).
※Chromospheric activity is related to rotational-induced stellar dynamo (mechanism of generating stellar magnetic field.) High ro(8542) \Rightarrow Superflare stars have large starspots.

Takeda et al.(2010) Solar-analog stars

Flare energy vs sunspot area

10^30 erg
$10^{\wedge} 29 \mathrm{erg}$

Flare energy vs sunspot area

Flare energy vs sunspot area

Effects of Inclination angle on the relations between Brightness variations and Flare Amplitude

Corresponding to Spot sizes

Effects of Inclination angle on the relations between Brightness variations and Flare Amplitude

$$
E \propto A^{3 / 2}
$$

$$
\Delta F_{\text {flare }} \propto 10\left(\frac{B}{1000 \mathrm{G}}\right)^{2}\left(\Delta F_{\text {rot }} \frac{1}{\sin i}\right)^{3 / 2}
$$

Corresponding to Flare Energys

Superflare energies can be explained by the magnetic energy stored around the starspots.

If the object has low inclination angle, the data point move to the left. Is it OK??

vsin(i) vs velocity estimated from the brightness variation

$$
v_{l c} \approx \frac{2 \pi R_{\text {sun }}}{P} \quad i \approx \arcsin \left[\frac{(v \sin i)_{\text {spec }}}{v_{l c}}\right]
$$

P[day]: Brightness variation period

Line of Sight

Rotation axis

Summary

High dispersion spectroscopy of solar-type supreflare stars.

- About half of solar-type superflare stars are binary.
- Superflare stars show choromospheric activity and this suggests the existence of large starspots
- Assuming that the brightness variation period correspond to the rotational period is consistent with the value of $v \sin i$ (projected rotational velosity) measured from spectroscopic results.
- Li abundances of superflare stars \rightarrow Honda-san's poster

