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What is “Super-Earths?”

There is no official definition by IAU

Planets with the mass and radius between Earth and Uranus/

Neptune (No corresponding planet in Solar System)
— Mass: 1-15 M_Earth

— Radius:1-4 R_Earth

Not necessarily rocky planets
— large Earth / mini-Neptune

— the boundary is still unclear



Importance of Super-Earths

* A new class of planets

— No corresponding planet in the Solar System

* Many unknowns
— Formation mechanisms
— Migration mechanisms
— Planetary structures

— Atmospheres

* Important targets toward Earth-twin planets



How to Characterize Transiting Planets

* Transiting planets allow us to probe
— internal structure of planets
— atmospheric composition of planets

— orbital migration history of planets

* Transmission spectroscopy can give us useful clues
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Mass-Radius Relation for “Super-Earths”

Courtesy of M. lkoma
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There is a wide diversity of

structures of super-Earths.

Theoretical models can
predict mass-radius relation
for a variety of bulk
compositions, but models are

often degenerated.

We need further information

to solve the degeneracy.



Transmission Spectroscopy

l upper
| Latmosphere

| W/, — dimming with
stellar line ‘o’ excess absorption

Transit depth depends on lines / wavelength

reflecting atmospheric compositions



Discriminating Major Component of Atmosphere

Multi-band observations are useful to distinguish the major composition
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Model for super-Earth GJ1214b based on Miller-Ricci & Fortney (2010)
Various atmospheric models were calculated by Howe & Burrows (2012)



“Water” and Planet Formation and Migration

 Water ice is the major component of solid materials outer than

the snow line
e Difficult to acquire in situ inner than the snow line

» Water is a useful diagnostic for planet formation and migration

* Statistical studies of the major component of inner super-Earths
will give useful constraints on formation and migration

mechanisms by comparison with planet population synthesis



Motivations for Transmission Spectroscopy

* Transmission spectroscopy of super-Earths enable us to
1. determine the major component of atmospheres

2. solve the degeneracy of the mass-radius relation, and allow

us to determine the internal structure of planets

3. constrain planetary formation / migration



Good Targets for Transmission Spectroscopy

* Large transit depth (large R /R)
— easy to see wavelength dependence

— smaller host stars (M dwarfs) are favorable
* Bright host stars

— give higher precision for Rp/RS

— nearby stars are brighter

» Super-Earths around nearby M dwarfs are the most

favorable targets
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The First Good Target: GJ1214b

Transiting super-Earth around M4.5V star (Charbonneau et al.

2009)

Planet Radius:~2.7R¢ ., Mass:~6.5M,_.,, Period:~1.58 days
Transit depth is ~¥1.5% due to small host star’s radius ~0.2R .
only ~13 pc away

B=16.4, V=14.67, J=9.75, H=9.09, Ks=8.78

The first (and only by 2012 June) super-Earth for which one can

characterize planetary atmosphere in detail



What Previous Observations Found
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Green: H dominated with solar metallicity
Red: H dominated with sub-solar metallicity and cloud layer at 0.5 bar
Blue: Vapor dominated atmosphere



Our Strategies

To confirm or refute the hydrogen dominated
atmosphere, we proposed to confirm a deeper

transit in Ks and blue wavelength region

IRSF/SIRIUS for JHKs band in 2011 and 2012
Subaru/S-Cam and FOCAS for B band in 2012



JHKs Simultaneous Transit Photometry with IRSF

 |RSFis 1.4m telescope
located at Sutherland,
South Africa

* equips SIRIUS camera,
which can take JHKs band
images simultaneously

* QObs. date: 2011 Aug 14

e The first NIR 3-color
simultaneous transit

photometry in the world



Results@IRSF
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Photometric precision was ~0.13% (JH band) / ~0.15% (Ks band)
(Narita et al. 2013, PASJ in press)



Results@IRSF
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Shallower transit in Ks band, supporting water dominated atmosphere
(Narita et al. 2013, PASJ in press)




Subaru Observations

e accepted as S12B-017

 August 11, 2012 with S-Cam
— B band (GJ1214 -> B = 16.4 mag)

— Auto-guider trouble (-> but no problem)

— exposure time: 40 sec, dead time: 30 sec

e October 7, 2012 with FOCAS + IRM?2

— B band (effect of IRM2 is still unclear)
— exposure time: 40 sec, dead time: 23 sec

— twilight and low elevation



Relative flux

Result with Subaru S-Cam
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Photometric precision was 0.08% at B band

(Narita et al., in prep.)



Result with Subaru S-Cam

L e I L L
>, i |
3 1 . b & ++ " .--' ) ;
— A " Ny Vg 3 Theean § ¥
O B ‘ |
2 I ]
4 B ]
T 090 -
O ] ]
A i il
0.98 _| T N N TR N S A SR SN N SR R |—
0.005 ;_| e L L R |_§
0 BRIAIMIRNSIN -SSP NN APy INIRI S
—0.005 E —
= T T T =

0.8 0.85 0.9

HJD — 2456151
Photometric precision was 0.08% at B band

(Narita et al., in prep.)



Result with Subaru FOCAS (+ IRM2)
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Speculations for GJ1214b

 The most plausible model is water-dominated atmosphere

* GJ1214b cannot acquire water in situ due to its close-in orbit

(P=1.58 days)

— migrated from outer region beyond the snow line?

— acquisition by comet/asteroids bombardment?
 Migration process is still unknown

— Need measurement of the Rossiter-McLaughlin effect with IRD



Subaru Capability and Future Prospects

* New Observing method

* New targets



Transmission Spectroscopy by MOS

* One can do transmission spectroscopy using MOS (multi-
object spectroscopy) instruments

— e.g., VLT/ FORS2, Gemini/GMOS (Subaru/FOCAS, MOIRCS)
— VLT/FORS2 and Gemini/GMOS already showed excellent results

e Simultaneously observe target and reference stars
— using very wide slit (~¥10”) to avoid light-loss from slits
— wide field of view is preferred to find good reference stars

— integrate wavelength to create high precision light curves



Recent Example by Gibson+ (2012)
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MOS is useful to see Rayleigh Scattering
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The slope reflects the strength of Rayleigh scattering of

planetary atmosphere



Prospects for New Transiting Super-Earths

e Several teams in the world (including IRD team) aims
to discover new transiting super-Earths around
nearby M dwarfs

— by both RV survey and transit survey

* Expected (realistic) number of targets for TS
— several by IRD + transit follow-up

— a few by ground-based transit survey and IRD follow-up

— around 10 by 2016



All-Sky Transit Survey: TESS (by MIT/NASA)

Currently proposed to NASA. Selection result will be announced in Feb 2013.
If selected, TESS will be launched by 2016.



TESS Discovery Space

* Targets

— Bright nearby stars with | = 0-12 mag (FGKM stars)

* Period of detectable planets
— typically less than 10 days
— up to ~60 days for specific fields

— Planetary orbits with less than 10 (60) days period lie in

habitable zone around mid (early) M stars

— expected to discover ~500 super-Earths (around all-type stars

and near-to-far) by 2020



Summary

e Subaru S-Cam / FOCAS have shown excellent
photometric precision (sub-mmag) for GJ1214b
— Suggesting water-dominated atmosphere of GJ1214b

* More targets will be available in near future

— MOS capability is more useful for transmission
spectroscopy

— Subaru will become one of the most useful telescope for
this kind of study



