Ionization Source of a Minor-Axis Cloud in the Outer Halo of M82

(Matsubayashi et al. 2012, ApJ, 761, 55)

Kazuya Matsubayashi (Kyoto Univ.)

collaborator: H. Sugai, A. Shimono, T. Hattori, S. Ozaki, T. Yoshikawa, Y. Taniguchi, T. Nagao, M. Kajisawa, Y. Shioya, J. Bland-Hawthorn

Galactic winds

M82 image. B, V, and $H\alpha$ are in blue, green, and red. (NAOJ)

- Large-scale gas outflows from galaxies.
- Caused by supernovae in nuclear starburst regions or active galactic nuclei (AGNs).
- May have large impacts on galaxy evolution and inter-galactic medium.

Galactic winds

Basic properties are not fully understood yet.

- How old is the wind?
- Is it powered by radiation pressure or wind pressure?
- Is the source of energy impulsive or sustained over many dynamical times?
- Is most of the outflowing material swept up or entrained from the disk?
- Does the wind material escape the galaxy or fall back to the disk?
- How far does the wind expand?

M82 'Cap'

- The most distant gas cloud in M82.
- Does the wind reach the cap?
 - Ionized by shock or UV photons from the starburst regions?

gray scale: $H\alpha$

contour: X-ray

(Lehnert et al. 1999)

Observation

- Date: Nov. 22, 2011
- Telescope: Subaru
- Instrument: Kyoto3DII Fabry-Perot mode
- Target lines: $H\alpha$, [NII] $\lambda\lambda6548,6583$, [SII] $\lambda\lambda6716,6731$ (+ continuum 6650 Å)
- Spatial resolution: ≤ 0".9
- Spectral resolution: 19 Å
- Exposure: 300 seconds / frame, 21 frames

Continuum map

stars in the Galaxy

distant galaxies

- No continuum emission from the cap is detected.
- -> The cap is not a dwarf galaxy.

$H\alpha$ map

- Clumpy and filamentary structures are clearly detected.
- Typical size of knots is
 5" 10" (= 90 180 pc).
- Electron density of the brightest knot (H-C):
 1.0 cm⁻³
 - estimated from $H\alpha$ surface brightness

[NII] and [SII] maps

[SII] map

$H\alpha$ fluxes and line ratios of knots

Table 2
Observed Hα Flux and Line Ratios at each Knot

Knot ID	Hα Flux $(10^{-16} \text{ erg cm}^{-2} \text{ s}^{-1})$	[Ν 11]λ6583/Ηα	[S II]λλ6716,6731/Ηα
E-C	4.3 ± 0.1	0.34 ± 0.03	0.63 ± 0.06
E-N	4.0 ± 0.1	0.22 ± 0.03	0.60 ± 0.06
E-E1	3.3 ± 0.1	0.32 ± 0.04	0.63 ± 0.08
E-E2	2.8 ± 0.1	0.27 ± 0.04	0.45 ± 0.08
F-C	3.2 ± 0.1	0.18 ± 0.03	0.55 ± 0.07
F-N	2.6 ± 0.1	0.20 ± 0.04	0.60 ± 0.09
F-S	2.5 ± 0.1	0.20 ± 0.05	0.55 ± 0.08
G-C	2.3 ± 0.1	0.21 ± 0.05	0.56 ± 0.10
G-SE1	3.1 ± 0.1	< 0.11	0.63 ± 0.08
G-SE2	3.1 ± 0.1	0.12 ± 0.04	0.62 ± 0.08
G-SW	2.9 ± 0.1	0.18 ± 0.04	0.52 ± 0.08
H-C	5.7 ± 0.1	< 0.06	0.55 ± 0.04
H-W	3.3 ± 0.1	< 0.10	0.66 ± 0.07
J-C	2.8 ± 0.1	0.24 ± 0.04	0.55 ± 0.09
J-E	2.9 ± 0.1	< 0.12	0.46 ± 0.07
J-S	2.6 ± 0.1	0.17 ± 0.04	0.50 ± 0.08

Notes. The aperture sizes are $2''.25 \times 2''.25$. Uncertainties are in 1σ levels, while upper limits are in 3σ .

• [NII]/
$$H\alpha$$
 = 0.1 – 0.3

• [SII]/H
$$\alpha$$
 = 0.45 - 0.65

Photoionization model

- filled circle: cap
- solid line: photoionization model (Cloudy)
 - at various metallicities and ionization parameters

Observed ratios can be explained by photoionization model.

Slow shock model

- filled circle: cap
- dashed line: slow shock model (Shull & McKee 1979)
 - shock velocity= 40 100km/s

Observed ratios can also be explained by slow shock model.

Fast shock model

- filled circle: cap
- dotted line: fast shock model (Allen et al. 2008)
 - shock velocity= 200 1000km/s

Observed ratios cannot be explained by fast shock model.

Another diagnosis

- Can photoionization or slow shock models explain the Hα surface brightness of the
 brightest knot?
- We assume that the knot is a 90-pc diameter sphere.

Enough ionizing photons?

- Ionizing photon flux from M82 starburst regions: 10^{54} photons s⁻¹ (McLeod et al. 1993)
- Escape fraction of ionizing photons = ~6 %
- -> Photon flux at cap = $3.6 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}$
- Observed H α surface brightness = 1 x 10⁻¹⁶ erg cm⁻² s⁻¹ arcsec⁻² (2.25" x 2.25" aperture)
- -> Required photon flux = $3.7 \times 10^7 \text{ cm}^{-2} \text{ s}^{-1}$
- -> It is difficult to explain with photoionization, unless the escape fraction is extremely large, 60 %.

Enough pressure by the wind?

- Galactic wind model
 - Chevalier & Clegg (1985)
- -> Ram pressure at 11.6 kpc = 2.1×10^{-12} dyne cm⁻²

- Electron density of knot H-C = 1.0 cm⁻³
- Assumed electron temperature = 10⁴ K
- -> Thermal pressure = 2.8×10^{-12} dyne cm⁻²
- -> Model and observed pressure are well balanced.
- -> It is likely that the cap is ionized by slow shock.

Summary

- In order to investigate whether the galactic wind reach the cap, we observed the M82 cap with Kyoto3DII Fabry-Perot mode.
- It is quite likely that the cap is ionized by slow shock and therefore the galactic wind can reach the distance of the cap, 11.6 kpc.
- More distant clouds?

