

Table of Contents

- Keck / Subaru Exchange Program
- Recent Keck Observatory Instrumentation and Adaptive Optics Development Highlights
- Scientific Productivity

Benefits of Time Exchange

- Expands observing capabilities for each community
 - Subaru's unique wide-field capabilities
 - Keck's powerful spectroscopic & adaptive optics capabilities
- Economical: new instruments are expen\$ive
- Brings Keck and Subaru communities closer together
- Contributes to Mauna Kea Observing System
 - As capable as any on Earth

Subaru-Keck Exchange & Capabilities Offered

Subaru

- Initiated in semester 2007B
- Suprime-Cam: wide-field optical imager
- MOIRCS: IR imager & multi-object spectrograph
- Expanded to also include FOCAS, HDS, IRCS (with NGS AO), FMOS, and COMICS
- Up to 6 nights / semester

Subaru-Keck Exchange & Capabilities Offered

Keck I

- LRIS: multi-object optical spectrograph
- OSIRIS: adaptive optics near-infrared integral-field spectrograph
- MOSFIRE: new multi-object infrared spectrograph
- maximum of two Keck I nights

Keck II

- DEIMOS: wide-field multi-object optical spectrograph
- ESI: moderate-resolution optical spectrograph
- NIRSPEC: infrared spectrograph
- NIRC2: adaptive optics infrared imager (& spectrograph)
- maximum of four Keck II nights
- Maximum of two laser guide star nights

Keck Community Usage of Subaru

Semester	PI	Instrument	# of nights
2007B	Brown	Suprime-Cam	2
2007B	Ellis	Suprime-Cam	2
2008A	Brown	Suprime-Cam	2
2008A	Steidel	MOIRCS	2
2008B	Brown	Suprime-Cam	2
2008B	Brodie	Suprime-Cam	2
2009A	Wilson	MOIRCS	1
2009A	Brown	Suprime-Cam	2
2009B	Stanford	Suprime-Cam	2
2009B	Fraser	Suprime-Cam	1
2010A	Stanford	Suprime-Cam	2
2010A	Brodie	Suprime-Cam	1
2010B	Stanford	Suprime-Cam	1
2010B	Steidel	MOIRCS	2
2010B	Brodie	Suprime-Cam	1

Semester	PI	Instrument	# of nights
2011 A	Stanford	Suprime-Cam	1
2011 A	Bullock	Suprime-Cam	1
2011 A	Spencer	Suprime-Cam	1
2011 B	Stanford	MOIRCS	3
2011 B	Hansen	MOIRCS	1
2011 B	Brown	IRCS+AO	2
2012 A	Hansen	MOIRCS	1
2012 A	Spencer	Suprime-Cam	1
2012 B	Spencer	Suprime-Cam	1
2012 B	Hansen	MOIRCS	1
2012 B	Brown	Suprime-Cam	2
2013 A	Brown	Suprime-Cam	2
2013 A	Wittman	Suprime-Cam	1
2013 A	Zuckerman	Comics	1
2013 A	Weaver	Suprime-Cam	3

Subaru Time on Keck Instruments (2007B thru 2013A)

Potential Future Time Exchange Opportunities

Subaru

- Hyper Suprime-Cam
- Prime Focus Spectrograph

Keck

- NIRES
- Keck Cosmic Web Imager (KCWI)
- Performance enhancements to adaptive optics
- Both observatories: could expand to additional nights if there is sufficient interest

MOSFIRE

Multi-Object Spectrometer For InfraRed Exploration

- Near-IR Multi-Object Imaging Spectrometer
 - 0.97 to 2.45 μm
- Keck I + MOSFIRE provide:
 - R = 3,270 for a slit width of 0.7"
 - 46 slits over 6.1' x 3' FOV using a remotely configurable slit mask unit
 - Imaging FOV 6.14' diameter with 0.18" pixels
- Unique capability worldwide
- Commissioning complete
- Over 50 nights of science observing in semester 2012B
- Now WMKO's most popular instrument

Example spectra: nodded pair in K-band

These are all H-alpha lines, z~2.4-2.5, based on nothing more than interleaved difference of ten 3-min exposures in K band.

Keck I Laser Guide Star Adaptive Optics

Keck I Laser Guide Star Adaptive Optics

- Motivation
 - Improved performance relative to K II LGS AO
 - Redundancy
- Brighter LGS AO spot
 - New solid-state laser
 - Spot 44% brighter than K II on dual LGS night
- Better performance from center projection (vs. side projection)
 - Spot elongation reduced
 - 37% smaller spot than K II on dual LGS night
- OSIRIS moved from K II to K I
 - NIRC2 remains with K II LGS-AO system
- Shared risk science commenced as planned in May 2012
 - Positive observer feedback
- New OSIRIS grating installed recently
 - Higher efficiency, particularly at shorter wavelengths

Implement Center Laser Launch for Keck II LGS-AO

- Improve Keck II LGS AO performance
- Serve as launch telescope for NGAO
- First light planned for early 2014
- Funded by public-private partnership

Keck I AO IR Tip-Tilt

- Implement near-IR tip-tilt sensor for KI LGS AO
 - Dramatically increases sky coverage and improves
 Strehl by decreasing contribution of tip-tilt errors
 - particularly in absence of optically bright tip-tilt star
 - Passed Detailed Design Review in February 2012
 - Supported by NSF ATI program
 - First light:semester 13B

KCWI Keck Cosmic Web Imager

- KCWI: optical integral-field spectrograph for Keck II
- Example science drivers
 - Low-surface-brightness galaxies
 - Galaxy kinematics
 - Galactic superwinds / feedback
 - Circum-galactic medium 2<z<7
 - Circum-QSO medium
 - z~6 reionization bubbles
 - Strong lens systems
 - Jets from young stars
 - Supernova light echoes

KCWI Design & Progress

- (8-30) arcsec x 20 arcsec field
- R~1000-20,000
- 2 channels, 0.35-1.0 μm
- Flexible sampling, FOV, resolution
- High efficiency (~30%)
- Designed for precision sky subtraction
- Funded primarily by TSIP
- Detailed Design Review: November 19-20, 2012

Keck Adaptive Optics Discovers Pivotal Star to Test General Relativity

- S0-2 is previously known star closest to Galactic Center black hole: 16 year period
- S0-102 is newly discovered star with 11.5 year period
- Improvements in Keck AO enable fainter stars to be discovered and studied
- Meyer, Ghez, et al. 2012,
 Science 338, 84

Number of Publications per Year

Number of refereed publications increasing over time

Adaptive Optics Publications Per Year

Ph.D. Theses Based on WMKO Observing

• Strategic Goal: Training the future leaders of the field

Keck Observatory and our science community strongly value our collaboration with Subaru

