Co-evolution of galaxies and central black holes: Extended emission-line region around quasars

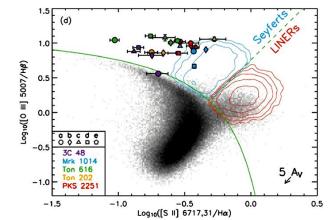
Matsuoka, 2012, ApJ, in press (arXiv:1203.1356)

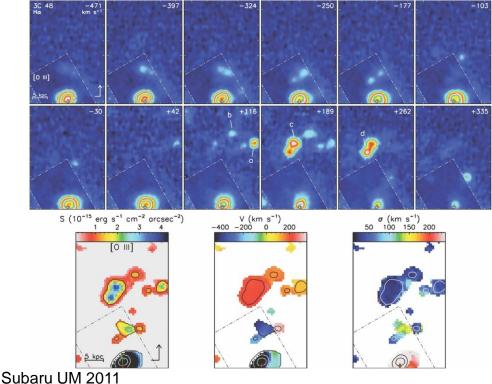
Yoshiki Matsuoka (Nagoya University)

INTRODUCTION – ELR (or EELR)

Extended emission-line region

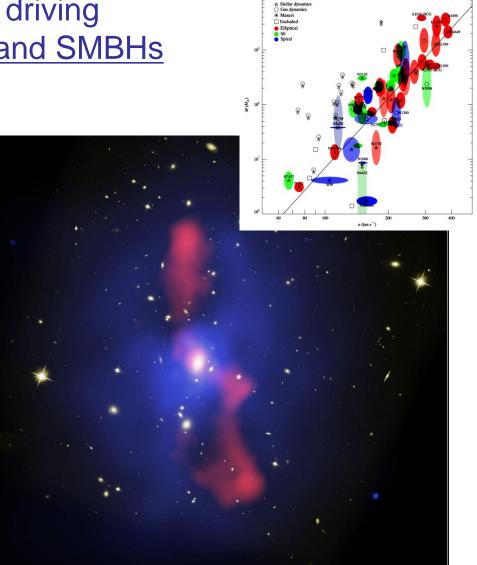
- Massive ionized nebulae observed around some AGNs (~a few x 10 kpc)
- Mostly detected in [O III] $\lambda 5007$
- Not many observations to date
 - Long-slit spectroscopy (Boroson et al. 1985; Villar-Martin et al. 2011)
 - NB-filter imaging (Stockton & MacKenty 1987)
 - IFU spectroscopy (Husemann et al. 2008; Fu & Stockton 2009)
- Preferentially found around radio quasars with
 - steep radio spectrum
 - strong NLR [O III] line
 - broad and bump H β profile
 - weak Fe II lines


n s	IC 2497	IC 2637	Mkn 78	Mkn 266
07	Mkn 273	Mkn 463	Mkn 739	Mkn 883
07 te				
)11)	Mkn 1498	NGC 4388	NGC 5252	NGC 5972
⁰⁹⁾ adio	SDSS 0955+39	SDSS 1005+28	SDSS 1510+067	SDSS 1524+08
	SDSS 2201+11	Teacup 1430+13	UGC 7342	UGC 11185
Subaru UM 2011 1				


INTRODUCTION – Why do we care?

Extended emission-line region

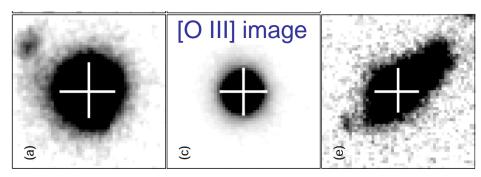
- Ionization source: mostly AGN (based on the BPT diagram)
- Kinematics: •
 - "locally ordered but globally disordered"
 - some high-velocity clouds leaving the host galaxies
 - minor-merger origin?
 - ELR phenomenon
 - = galaxy-wide energy injection into the ISM by AGN radiation



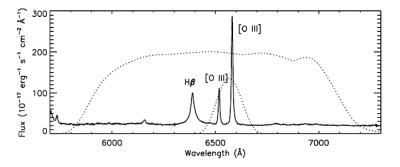
INTRODUCTION – AGN feedback

A compelling mechanism for driving the co-evolution of galaxies and SMBHs

- "Magorrian relation" (→)
 tight correlation between galaxy-bulge mass and SMBH mass
- "Over-cooling" problem
 - much more massive galaxies are formed in the Λ CDM models than observed
- Color-mass-morphology relation
 - models predict the inverted relation to observations.


\rightarrow Regulate SF activity in massive galaxies by AGN

DATA – New observation and compilation

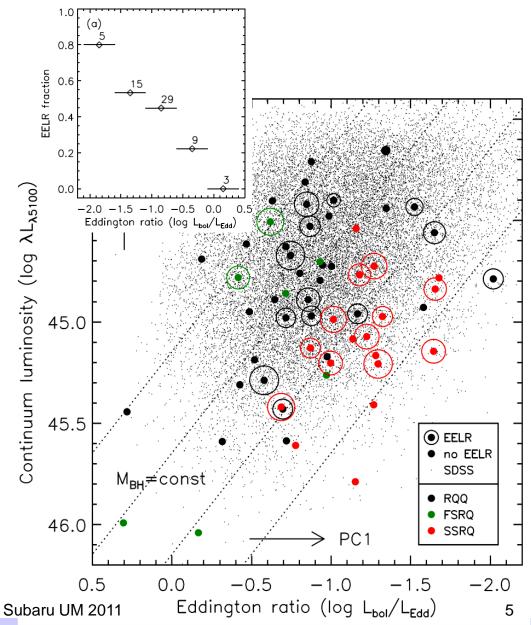

Subaru/Suprime-cam observation

- Open-use program S11A-028 (2011 May 2-4; 1/3 clear nights)
- Targets: SDSS quasars at z ~ 0.3
- Filter: NA₆₅₆ ([O III] λ 5007), R_c (cont.)
- Exp time: 45 min (NA_{656}) + 15 min (R_c)
- \rightarrow Detection of 2 ELR out of 5 targets

Compilation of the past measurements

- 61 type-1 quasars (27 ELR detection)
- 20 type-2 quasars (10 ELR detection)

Subaru UM 2011


RESULTS – Origin of ELR - PC 1 correlation

Principal component 1 (PC1; eigenvector 1) of the AGN emission correlation

- steep-spec. radio emission
- strong NLR [O III] line
- broad and bump $H\beta$ profile
- weak Fe II lines
- mainly driven by Eddington ratio

Clear correlation between the ELR fraction and Eddington ratio

Origin of the ELR dependence on the PC 1 constituents

RESULTS – What regulates ELR emergence?

L (ELR) = L (AGN) x M (extended gas)

- no positive correlation between the ELR fraction and L(AGN); consistent with the previous studies
- \rightarrow M (Extended gas) !
- Strong correlation between NLR and ELR [O III] ... "Gas availability"

0.8

0.6

0.4

0.2

0.0

EELR fraction

18

Subaru UM 2011

Yoshiki Matsuoka

44.5 45.0 45.5 46.0

Continuum luminosity (log $\lambda L_{\lambda 5100}$)

1.0

0.8

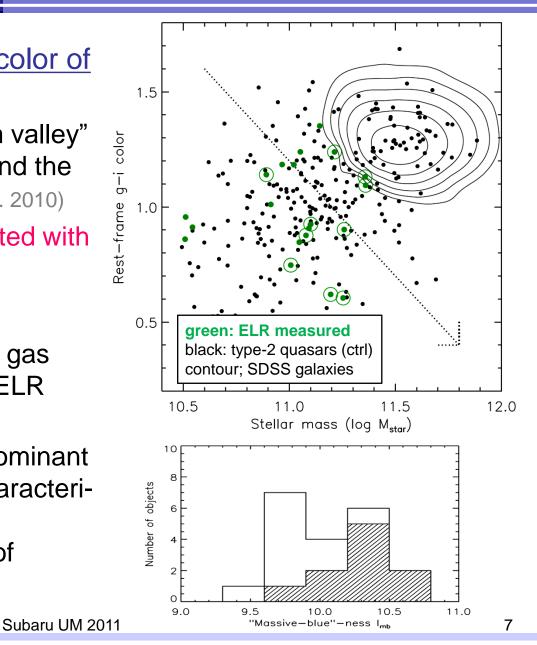
0.6

0.

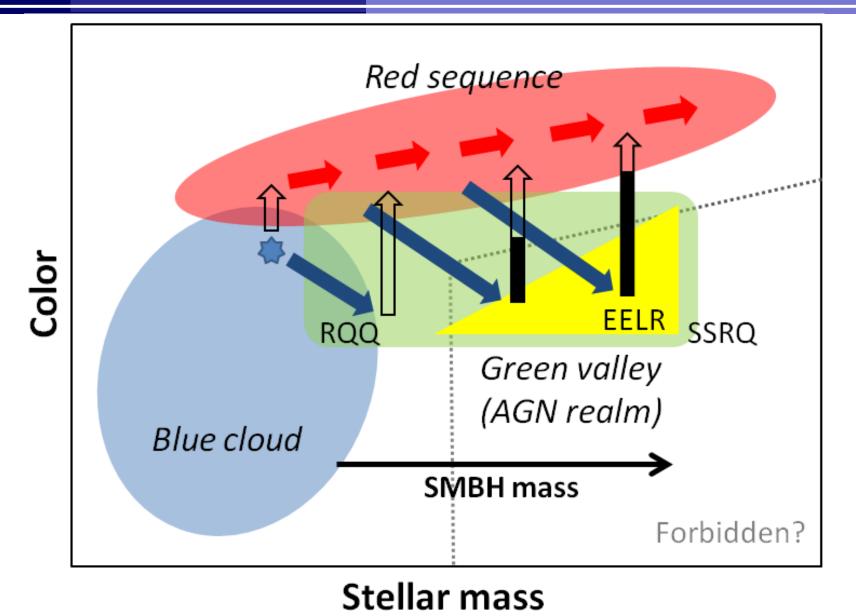
0.2

0.0

44.0


ELR fraction

(c)


RESULTS – Host galaxies

Stellar mass and rest-frame color of type-2 quasars

- AGNs ... reside in the "green valley" between the red sequence and the blue cloud (e.g., Schawinski et al. 2010)
- ELR is preferentially associated with massive blue galaxies (→)
- Blue color
 - minor-merger origin of ELR gas
 - presence of ample gas for ELR
- Massiveness
 - Massive galaxies are the dominant hosts of radio-loud AGNs characterized with low Eddington ratio
 - may explain the whole set of observed correlations

DISCUSSION – In the context of galaxy evolution

Yoshiki Matsuoka

Subaru UM 2011

SUMMARY

- <u>Extended emission-line region (ELR)</u> is massive ionized nebulae observed in some AGNs.
- It may be an important phenomenon related to the "AGN feedback"
- We carried out a new Subaru/Suprime-Cam observation and data compilation, resulting in 81 ELR measurements around type-1 and 2 quasars.
- We find that ELR
 - anti-correlates with Eddington ratio (hence radio emission),
 - is regulated by the amount of available gas,
 - is preferentially associated with massive blue galaxies.
- We suggest that ELR occupies massive-blue corner of the green valley, the AGN realm, on the galaxy color – stellar mass diagram. Once a galaxy is pushed to this corner, activated AGN would create ELR by the energy injection into the ISM and eventually blow it away, leading to star-formation quenching (AGN feedback process).