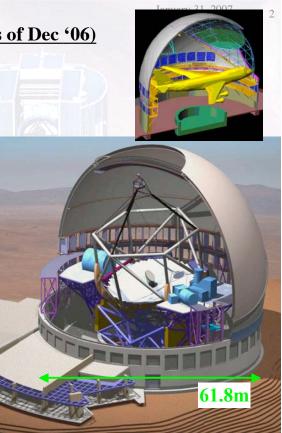
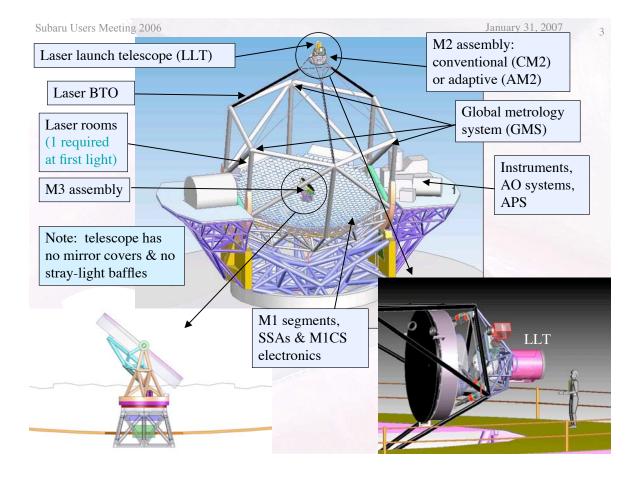


Tomonori USUDA

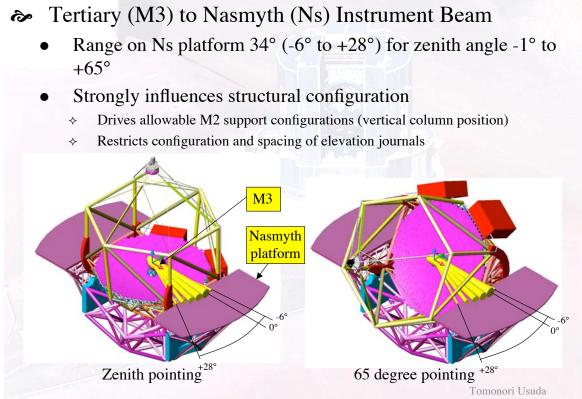

(SUBARU Telescope)


Tomonori Usuda

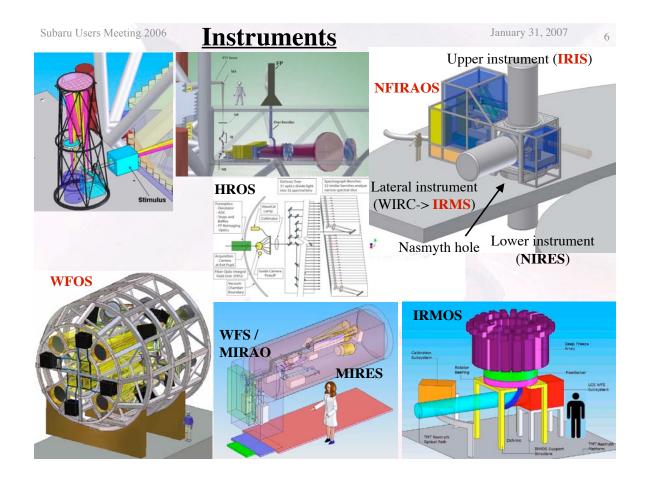
Subaru Users Meeting 2006

TMT Reference Design (as of Dec '06)

- Costs: \$743M (US\$ / FY2006) ò
- **30m** filled aperture, highly segmented È
- Aplanatic Gregorian (AG) two mirror È --> Richey-Chretien (RC) two mirror
- f/1 primary È
- f/15 final focus È
- 1.2m x 738 --> 1.4m x 492 segments È
- M2/M3 size: 3.6/4.1m φ --> 3.0/3.5m È
- Two Nasmyth foci (No Cassegrain) È
- Field of view 20 --> 15 arcmin È
- Wavelength coverage $0.31 28 \,\mu m$ È
- Operational El angle: $25^{\circ} \sim 89^{\circ}$ È
- Conventional M2 w/ LGS (Adaptive ò M2 future capability)
- AO system requirements and ò architecture defined
- First generation instruments: 2~3 ò



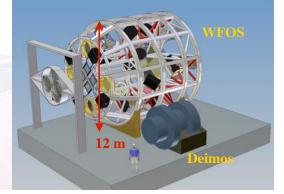
Subaru Users Meeting 2006


Beam Clearance

January 31, 2007

TMT Science Instrument Summary

<u>1 W1 Science instrument Summary</u>				
Instrument	Spec. Res.	Science Case		
Near-IR DL Spectrometer & Imager (IRIS)	≤4,000	 Assembly of galaxies at large redshift Black holes/AGN/Galactic Center Resolved stellar populations in crowded fields 		
Wide-field Optical Spectrometer (WFOS)	300 - 5,000	 IGM structure and composition 2<z<6< li=""> High-quality spectra of z>1.5 galaxies suitable for measuring stellar pops, chemistry, energetics </z<6<>		
Multi-slit near-IR Spectrometer (IRMS)	2,000 - 10,000	 Near-IR spectroscopic diagnostics of the faintest objects JWST followup 		
Mid-IR Echelle Spectrometer & Imager (MIRES)	5,000 - 100,000	 Physical structure and kinematics of protostellar envelopes Physical diagnostics of circumstellar/protoplanetary disks: whe and when planets form during the accretion phase 		
Near-IR, DL Echelle (NIRES-B (JHK))	5,000 - 30,000	 Radial velocities of M-stars and detection of low-mass planets IGM characterizations for z>5.5 		
Multi-IFU, near-DL, near-IR Spectrometer (IRMOS)	2,000 - 10,000	 Near-IR spectroscopic diagnostics of the faintest objects JWST followup 		
ExAO I (PFI)	50 - 300	Direct detection and spectroscopic characterization of extra-sola planets		
Optical Echelle (HROS)	30,000 - 50,000	 Stellar abundance studies throughout the Local Group ISM abundances/kinematics, IGM characterization to z~6 Extra-solar planets 		
Near-IR, DL Echelle (NIRES-R (LM))	5,000 - 30,000	 Radial velocities of M-stars and detection of low-mass planets ISM abundances/kinematics, IGM characterizations for z>5.5 		
MCAO imager (WIRC)	5 - 100	 ➢ Galactic center astrometry ➢ Stellar populations to 10Mpc Tomonori Usuda 		


IRIS: InfraRed Imaging Spectrograph

- Upgrade of OSIRIS on Keck
- Coupled to MCAO (NFIRAOS) System
- ✤ 0.8~2.5um /18" imaging field 4mas sampling
- ✤ Up to 4 lenslet modules of:
 - 128x128 IFU 5 ~ 25mas pix / R=4000 over JHK
 - 4k x 4k Rockwell Detector with 10 µm pixels (4 Hawaii2-RG)
 - FOV: 1"x1" (5mas) ~ 6"x6" (25 mas)
- Two Three mirror anastigmats (TMAs)
- ➢ Grating 42 lines/mm for K-band
- Expandable with dithered lenslets
- Install (2015) / 1st light (2016) w/o LGS / (2016~2017) w/ LGS
 cf. Telescope partial 1st light (2015/04) / 1st light (2016/01)

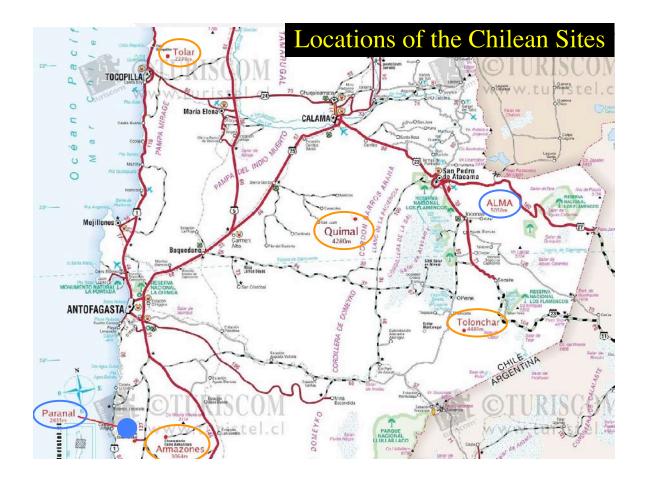
Subaru Users Meeting 2006

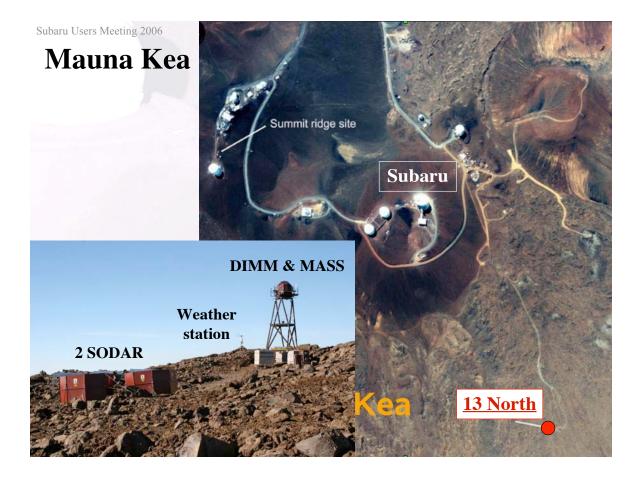
WFOS: Wide Field Optical Spectrograph

- ➢ Multi-object spectroscopy over as much of 20' field as possible
- Two barrels w/ Red & Blue Cameras in each barrel (goal: four)
- ➢ Wavelength: 0.31-1.0µm (0.30-1.6µm goal). ADC required
- ➢ Field of view: 50 arcmin²;(goal: 300 arcmin²)
- ∼ Image quality: ≤ 0.2" FWHM over any 0.1µm
- Spatial sampling: ≤0.15"/pix, (goal ≤ 0.10")
- ➢ Spectral Res: R=500~7500 for 0.75" slit; (goal: 150~6000)
- ✤ GLAO enhanced image quality
- Upgrade path to IFU mode

7

January 31, 2007

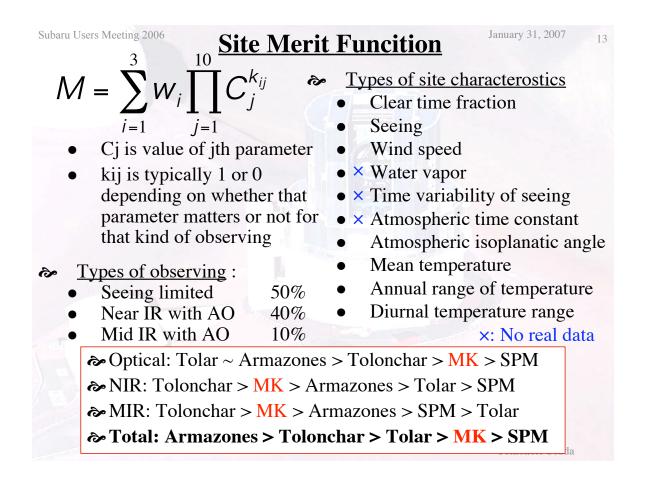

Tomonori Usuda


January 31, 2007

Subaru Users <u>Candidate Sites</u>	Elevation [m]		liness Usable [%]	PV 50% [mm]	VV 10% [mm]	9
Tolar SP Martir Armazones Mauna Kea Quimal Tolonchar	2290 2830 3064 4210 <u>4275</u> 4480	81 73 80 69 77 70	85 80 86 78 84 78	4.02 2.63 2.87 1.86 <u>2.05</u> 1.70	1.59 1.06 1.15 0.72 0.93 0.70	
Tolar San Pedro M in Mexic					blonchar	

Armazones

Tomonori Usuda



Results (~ No	v '06)	T1 Tolar	T2 Armazones	T3 Tolonchar	T4 SPM	T6 Mauna Kea
DIMM seeing DIMM seeing 10% MASS seeing MASS seeing 10% GL seeing Isoplanatic angle	[as] [as] [as] [as] [as]	0.63 0.42 0.43 0.23 0.38 1.81	0.64 0.41 0.44 0.23 0.37 1.80	0.64 0.44 0.48 0.24 0.39 1.80	0.78 0.50 0.36 0.17 0.60 1.69	0.73 0.45 0.32 0.14 0.59 2.69
Temperature @ 2m Temp. 10-90% @ 2m Wind @ 2m Wind @ 7m Humidity @ 2m	[C] [C] [m/s] [%]	14.0 5.7 3.4 4.9 19.0	8.0 7.0 5.4 6.7 21.0	-0.8 9.1 3.0 4.9 33.0	5.2 15.8 (2.6) (2.7) 39.0	2.8 6.4 4.5 5.9 27.0
 All Layer Seeing (DIMM) (Good) Tolar ~ Armazones ~ Tolonchar < MK < SPM (Bad) Higher layer (>500m) Seeing (MASS) (Good) MK < SPM < Tolar ~ Armazones < Tolonchar (Bad) 						

- (Good) MK < SPM < Tolar ~ Armazones < Tolonchar (Bad)
 ➢ Ground Layer Seeing

 (Good) Tolar ~ Armazones ~ Tolonchar < MK < SPM (Bad)
 ➢ Isoplanatic angle
 - (Big) MK > SPM > Tolar ~ Armazones > Tolonchar (Small) Tomonori Usuda

Subaru	Users	Meeting	2006
--------	-------	---------	------

Schedule / Discussion

14

January 31, 2007

Tomonori Usuda

- ✤ Schedule:
 - 2007 4Q: Site reports will be submitted
 - 2008 1Q: Site decision by TMT board
- Discussions about Mauna Kea 13N (MK13N):
 - MK13N should be the **only one or No.1**.
 - Other factors (e.g., Infrastructures, Collaboration etc.): MK best
 - Is the seeing at 13N worse than Chilean site? cf.) Cross-check the data with UH IfA and Subaru cf.) Seeing conditions @VLT site is worse than before.
 - We have only one year to obtain some evidences which easily show that MK is the best site for TMT.