SCEXAO: Enabling Deep Contrast Exoplanet Observations at the
Diffraction Limit with New Technologies

Subaru Coronagraphic Extreme Adoptive Optics
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TEAMS: GLINT, FIRST, VAMPIRES, NIR-PL, MEC, SPIDERS, AO3k
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Due tti the extreme contrast between exoplanets and their host
stars, direct imaging and spectroscopy of exoplanets poses
significant technical challenges. The SCExXAO system is
actively participating in the development of promising new
technologies to meet this challenge and provide unique
capabilities to Subaru users.

Length (um)
500 1000 1500 2000

Photonic spectrograph (PS):

planet spectrum

Optical fiber =0 o 2.5x efficiency gain: optimal

¥ centered on o TSciencedata separation of exoplanet light £ ﬁ ‘ . R
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Detectors:

e MEC (upgrade ongoing at UCSB)

e CRED1 now permanently installed for fPDI and photonic
spectrograph
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photonic nulling chip symmetric light combination maintain broadband null
highly-efficient photonic spectrograph. e Self-calibrating

“Conventional” high contrast
imaging system

Astrophotonics:

e GLINT nuller operated in NIR

e Photonic spectrograph used by GLINT and NIR-PL, shared
camera with fPDI

e Photonic lantern -> see poster P27

Example architecture optimized for exoplanet spectroscopy (for Subaru, HWO and TMT) UPCOMING: Thermal-actuated phase shifters

Wavefront control and Speckle control:

e Algorithms: PSF reconstruction, Optimal AO control SPECTROGRAPH
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RECENT HIGHLIGHTS - GLINT

On-sky demonstration of active nulling using signal from photonic chip
GLINT chip used for both nulling and WFS
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i T S S S T PSF RECONSTRUCTION REVEALING NATURE OF SPECKLES WITH SPIDERS

~15 control modes ~30 control modes ?
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-> access deeper contrast for exoplanet imaging and spectroscopy ol W\ s st N < | " Suppress speckles using original_
“speckles” refers here to unwanted starlight in both focal plane imaging Y — - SN | LI
and photonic spectrograph R\ / - . * Record rf;iph%ed images atall

e Deep speckle nulling on-sky

DETECTORS

e Photonic Spectrograph now using ImMAPD technology (CRED1)
e MEC camera (using MKIDS) currently undergoing upgrades at UCSB
- will be shipped back to Subaru in ~1.5yr

« Use spectral differential
imaging and coherent
differential imaging on the

Input image Predicted image Truth image same dataset

SPIDERS (PI: C. Marois) will measure speckles in coherent light, at high speed and high spectral
A o . p2 el " g resolution -> will establish limits to high contrast imaging on Subaru and guide future developments

Neural Network on-sky image reconstruction (B. Norris)
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synchronization for PSF reconstruction. Able to acquire ~100 TB/night.
Algorithm development ongoing.
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