Introduction of RAVEN

Subaru Future Instrument Workshop 2011/1/18 @ Mitaka Shin Oya (Subaru Telescope)

Outline

- Overview of RAVEN project
- Multi-Object Adaptive Optics (MOAO)
- Details of RAVEN system

RAVEN Project

- MOAO demonstrator (targeting 1st on 8m class)
 Validation in laboratory room
 On-sky science verification
- Canadian group project
 - University of Victoria (UVic)
 - Herzberg Institute for Astronomy (HIA)
- Support by Japanese group
 - Subaru Tel. (infra/manpower, researcher exchange)
 - Tohoku Univ. (basic experiment in laboratory)
- Already funded
 - 6M CAD by BCKDF/CFI Leading Edge Fund
 - In kind contribution from HIA & Subaru (> 400K CAD)
- Schedule
 - 2013~(2015) Hilo/summit

Meaning to Subaru

- Good chance to obtain wide-field AO tech.

 no wide-field AO plan of Subaru is funded yet
 (⇔ seeing limited WF instr.: Suprim, FMOS, MOIRCS)
 tomography is common technique for all types of wide-field AO
- Experience for TMT
 - MOAO is advantageous for larger telescope
 - experience of on-sky verification by 8m class is important for the future development

Variety of AO type

Subaru AO line-up

Wide-field AO needs:

- Consideration 3D structure of the atmospheric turbulence
- Multiple guide stars

MOAO: Multi-Object AO

Advantage of MOAO

High Strehl ratio on the target
 ⇒ the same type adopted for Keck NGAO

Field-of-Regard expands w/ Tel. aperture
 ⇒ a candidate of TMT 2nd gen. instrument

Keck NGAO

Preliminary Design Review (June 2010)

Tip-Tilt NGS 5-120" dia

Science target

Patrolling LGS

30-120" dia

20" dia Central LGS

LTAO (Laser Tomography AO)

Narrow FOV, but high SR - SR=0.8 @ K -< 30" φ -7LGS + 3NGS

> Narrow Field 40" dia

Wide Field

120" dia

10

Field-of-Regard of MOAO

beam overlap at 6km (top view)

8m aperture 3arcmin FoR 3GS

MOAO for TMT UF / HIA Caltech

Feasibility study in 2006

- opto-mechanical design
- performance evaluation
- system engineering

FoR: 5 arcmin, 20 units

At Subaru Telescope

- Configuration
 - handled as a carry-in instrument
 - installed on NsIR; science instrument is IRCS
 - feasibility study is going on to use LGS

To be done

- -on-source open-loop experiment in Canada was successful. : 2.5" \rightarrow 0.5"
- validation of on-sky tomography by multi-GS has not been done yet.
- necessary to establish the calibration method
- on-sky science verification

System Specifications

Number of Science CH	2 (= number of DM)						
WFS	3 NGSs (+1 LGS) / 10x10 SH						
Field size	FoR: 2' (3.5' goal); FoV: 4" each ch						
Wavelength range	Sci: 0.9-2.5um ; WFS: 0.6-0.9um						
Science instrument	IRCS (Imaging, Grism, Echelle)						
Ensqured Energy	> 30% in 140mas slit (0.75" seeing)						
System Throughput	> 32%						

System Block Diagram

Optical Layout

top view (1320x1600)

SIIt#3, Ech, H Slit#4, Ech. IzJ + 700 Slit#14, Grism <0.51 650 600 4.0 4.0" acquistion 550 500 Science Science FoV#1 FoV #2 450 400 350 300 350 400 450 500 550 600 650 700 x acquisition point

3D

IRCS slit dual-feeding

Slit#2, Ech. K

750

on IRCS slit

by O. Lardiere

Expected Performance Condition: 0.75" seeing; 3NGSs @ r=45"

WFE[nm]

H-band

by D. Andarsen

X-axis: separation form the center of FOV in arcsec
Y-axis left: WFE in nm: O all modes; ▲ TT removed right: SR ×; ■ EE

SR

Sky Coverage Obs. cond.: 3 NGSs (R<13mag) within 2' φ

feasibility study is going on to ease the limit by: 2NGS + 1LGS; R<14mag; 2'+α FoR

by C. Blain

Metal poor stars

 Kinematic asymmetries in high-z disk galaxies

• Quasar pairs

If you are interested, please contact H. Terada, M. Akiyama, S. Oya. Especially, ideas on intra-galactic science are welcome because the sky coverage is almost limited to the Galactic plane.

Time Line

2010/7/14

Preliminary Timeline:

CoDR

RAVEN Timeline			DATE:	Jan-10	Jul-10	Jan-11	Jul-11	Jan-12	Jul-12	Jan-13	Jul-13
Task	Subtask	# People Assigned	Est. Time (Months)			Ţ					
Syster	n Modeling	TBD									
	Phase 1		6.0								
	Phase 2		7.0								
	Phase 3		15.0								
Opto-	Mechanical Design										
	Conceptual Optical Design		6.0								
	Preliminary OMD		8.0		-		-				
	Final OMD		6.0								
Softw	are and Computing										
	Preliminary Software Design		12.0								
	RTC Development & Integration		8.0								
Procu	rement										
	Place component orders		12.0								
Integr	ation										
	Integrate system at UVic AO Lab		10.0							1.1	
Testin	g										
	UVic AO Lab Testing		8.0								
	Hilo Testing		4.0								
	Subaru Testing		6.0								
	Total M	lonths Work									

- MOAO demonstrator
 - collaboration between Canada and Japan
 - project scale: 6M CAD / $3yr + \alpha$
 - targeting the 1st on 8m class telescope
- At Subaru Telescope
 - carry-in instrument ; uses IRCS @ NsIR (LGS?)
 - tomography, open-loop control & calibration
 - on-sky science verification
- Observation condition
 - 2 objects in 2' ϕ FOV with 3(2) NGS (R<13)
 - max.SR@H=0.3 (3NGS); =0.5 (3NGS+1LGS)
 - help wanted for science case