Status updates of IRD-SSP

Bun'ei Sato (Science Tokyo) on behalf of the IRD-SSP team

Redefinition of science goals in 2022

• Minimum Success

- Detection of >1 terrestrial planets (m sini = 1 -10 M_{Earth})
- Limit on the distribution of giant planets (> a few 10 MEarth), located up to ~0.1 a.u. for >40 stars that can be compared to the result of gravitational microlensing planet.
- Provide an upper limit on the frequency of HZ planets, >3 MEarth
- Full Success:
 - Discover at least one HZ planet with m sini = 1-10 M_{Earth}
 - Limit the distribution of short-period (orbital period < 10 days), planets >3 M_{Earth}
 - Limit the frequency of existence of low-mass planets (>3 MEarth), including HZ planets
- Extra Success:
 - Discovery of one or more HZ planets of about Earth mass (m sini= 1-3 M_{Earth})
 - Obtain frequency of existence for terrestrial planets (>1 MEarth), including Earth-mass HZ planets
 - Discover Earth-like planets that can be followed up (transit photometry) to understand the atmospheres and internal compositions (e.g. mass-radius relationship)

Observation progress in S24A&S24B

- A total of 175 nights allocated for S19A~S23B period
- 25.5 nights lost due to troubles (telescope, detector, COVID-19). The nights are compensated in S24A-S25A.
- 169 nights were used for IRD-SSP by January 2025.
- Success rate was particularly not good in July and December in 2024.

S24A	Allocated (nights)	Observed (nights)	Success rate (%)
February	0	0	
March	2	1.1	53
April	1.5	1.1	71
Мау	0	0	
June	2	1.8	91
July	1.5	0.6	40
Total (S24A)	7	4.5	64.8
S24B	Allocated (nights)	Observed (nights)	Success rate (%)
S24B August	Allocated (nights) 3	Observed (nights) 2.0	Success rate (%) 68
August	3	2.0	68
August September	3 3	2.0 1.5	68 50
August September October	3 3 3	2.0 1.5 2.2	68 50 74
August September October November	3 3 3 1.5	2.0 1.5 2.2 1.2	68 50 74 83

Number of observations for each target

- Monitoring observations were carried out according to several criteria with levels of priority (screening, variability check, monitor, intensive follow-up).
- The numbers of observations for monitoring stars are shown on the right figure.
- The numbers of key stars are listed in the table below.

Number of observations	Number of stars
≥ 5	83
≥ 20	40
≥ 40	34
≥ 80	15

Publications

- 1. "A Super-Earth Orbiting Near the Inner Edge of the Habitable Zone around the M4.5-dwarf Ross 508", Harakawa et al. 2022, PASJ, 74, 904
- 2. "Elemental Abundances of nearby M Dwarfs Based on High-resolution Nearinfrared Spectra Obtained by the Subaru/IRD Survey: Proof of Concept", Ishikawa et al. 2022, AJ, 163, 72
- 3. "An Earth-sized Planet around an M5 Dwarf Star at 22 pc", Hirano et al. 2023, AJ, 165, 131
- 4. "Direct Imaging Explorations for Companions around Mid-Late M Stars from the Subaru/IRD Strategic Program", Uyama et al. 2023, AJ, 165, 162
- 5. "Planetary companions orbiting the M dwarfs GJ 724 and GJ 3988: A CARMENES and IRD collaboration", Gorrini et al. 2023, A&A, 680, 28
- 6. "Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Transmission Spectroscopy", Kuzuhara et al. 2024, ApJ, 967, id.L21

Several more papers are in preparation.

Property of Gliese 12 System

Gliese 12 b is receiving an insolation comparable to a temperate planet

12.76	
0.96 ± 0.05	
< 3.9 (3o)	
0.067 ± 0.002	
288 (+6, -5)	
1.6 ± 0.1	

Insolation of Venus = $1.9 S_E$

	100000000			
	ALC: NOT THE OWNER OF THE OWNER			
	Carlot Contraction		100	
			1000	
100				
122				
			1.	
			1 11	
	States and the second se		111	
	State of the second			
		Contraction of the second		

T _{eff} (K)	3296 (+48, -36)
M (M _{sun})	0.241 ± 0.006
R (R _{sun})	0.262
	(+0.006, -0.007)
[Fe/H]	-0.32 ± 0.06
Distance (pc)	12.166 ± 0.005

Kuzuhara-san's talk this afternoon

Artist's concept

Image Credit: NASA/JPL-Caltech/R. Hurt (Caltech-IPAC)

RV+ Transit Joint Fit

IRD, CARMENES, TESS, MuSCAT 2&3 How easily transmission can be done

How the planet is suitable for transmisssion: TSM

Definition of TSM: Atmosphere areas through lights from star pass is propotional to scale height. Larger TSM = Larger scale height x Greater SNR (=brightness) (Kempton+2019)

Among planets receiving insolations smaller than that on Venus, only Gliese 12 b and TRAPPIST-1 are realistic

Other planet candidates

We have 3 more planet candidates (FAP<1%), but we need more observations (> 10-20 RVs) to confirm them.

Collaboration with CARMENES

- New collaboration with the CARMENES team from 2022/09 to maximize science output of IRD-SSP
 - CARMENES project: visible & NIR RV survey of M-dwarfs started in 2016 (750-night exoplanet survey targeting ~300 M dwarfs)
 - Sharing a target list and RV data, coordinated observations, data reduction, activity analysis, etc.

Direct imaging explorations for companions around Mid-Late M stars

- Binarity study of IRD-SSP sample by Keck/NIRC2 and IRD/FIM
- "Deprioritized" IRD-SSP targets that have signatures of longterm RV trends and/or large RUWE values from the Gaia catalog suggesting unresolved systems
- Detected 7, including 4 new, companions at projected separations between ~ 2 - 20 au from the target stars (Uyama+ 2023)
- Detected more companions including a brown dwarf from 2023-2024 campaign (right fig.)

Orbital fitting of the new brown-dwarf

Papers in planning

- Input catalog (target parameters, stellar activity, Hα intensity etc.)
- Spectral library (1D spectra of IRD-SSP targets)
- Binary study (orbital motion, dynamical mass, etc.) using FIM and RV data
- Magnetic activity of M dwarfs (activity indicator, line-profile analysis etc.)
- Atmospheric parameters and abundance analysis for IRD-SSP targets
- RV data release paper (DR1, DR2)
- Follow-up works on known planet-host stars
- Statistical analysis (occurrence rate, distribution of planets etc.) for IRD-SSP targets
- Development of calibration method for telluric lines using rapidly rotating stars taken with IRD

•