Subaru User's Meeting 2025

A CNN-based AI for Object Detection in KBO search Images collected by Subaru telescope

Masato Sibukawa¹¹, Fumi Yoshida^{1,2}, Takashi Ito^{2,4}, Toshifumi Yanagisawa³, Hirohisa Kurosaki³, Makoto Yoshikawa³, Kohki Kamiya³, Ji-an Jiang^{4,5}, Alan Stern⁶, Wesley Fraser^{7,8}, Susan Benecchi⁹, Anne Verbiscer^{6,10}, Naoya Ozaki^{3,11}, Hosei O¹², Akira Hatakeyama¹¹

¹University of Occupational and Environmental Health, Japan, ²Chiba Institute of Technology, ³Japan Aerospace Exploration Agency, ⁴National Astronomical Observatory of Japan, ⁵University of Science and Technology of China, ⁶Southwest Research Institute Boulder, ⁷National Research Council Canada Herzberg Astronomy and Astrophysics Research Centre, ⁸University of Victoria, ⁹Planetary Science Institute, ¹⁰University of Virginia, ¹¹Sokendai, ¹²University of Tokyo

Team Introduction

Team Objectives

What is the KBO search team

The extended missions were started in 2016. After the Arrokoth flyby, the KBO search team has focused on the two objectives:

- (1) <u>find another KBO for flyby</u>
- (2) <u>observe as many KBOs as possible from the spacecraft.</u>

What is NASA's New Horizons (NH)

■ NH is a flyby mission to study the Pluto system and KBOs.

■ NH has now observed almost 40 KBOs and dwarf planets.

KBOs

The NH has observed the surface layers of outer solar system bodies in detail for the first time. Great success!

Solar phase angle

KEM1 2016-2019

KEM2 2022-2029

From Earth we can only observe KBOs at solar phase angles of 0 to 2 degrees, but from a spacecraft in the Kuiper belt we can observe KBOs at much larger solar phase angles.

Data Set

Year	Observation	Pipeline	R.A.	Dec.	Number	Sequence
	Time (MJD)	Night	(°)	(°)	Exposures	Duration (hrs)
2020	58995.4	03068	287.37585	-20.22724	81	2.7
	58997.5	03070	288.74057	-20.57457	76	2.7
	58998.5	03071	287.33743	-20.12725	123	4.1
	58999.5	03072	288.71466	-20.37960	127	4.3
	59000.5	03073	287.31192	-20.12834	126	4.2
	59001.5	03074	288.68802	-20.38238	58	4.1
	59019.5	03092	287.14477	-20.04175	129	4.4
	59020.5	03093	288.66147	-20.05024	117	4.0
	59021.5	03094	287.11257	-20.05892	113	3.8
	59022.5	03095	288.62929	-20.05384	101	3.4
	59024.5	03097	287.06207	-20.06483	129	4.3
	59025.5	03098	288.57787	-20.06015	119	4.0
	59073.3	03145	286.25079	-20.16488	116	3.9
	59074.3	03146	287.67551	-20.12296	128	4.3
	59075.3	03147	286.22292	-20.16881	127	4.3
	59076.3	03148	287.74292	-20.16470	121	4.3
2021	59374.5	03447	288.54961	-21.09995	115	4.2
	59382.5	03455	288.44956	-21.10000	94	3.4
	59400.4	03473	288.00157	-20.28053	117	4.1
	59462.2	03535	288.35953	-21.35001	119	4.0
	59463.2	03536	286.58291	-21.34999	116	3.9
2022	59732.5	03805	288.50000	-21.66665	111	3.9
	59733.5	03806	288.49996	-21.66668	119	4.1
	59759.5	03832	288.25939	-21.42730	Tatal	data
	59760.5	03833	288.25943	-21.42732	Total	data
	59872.2	03945	288.42499	-21.40842	size o	of raw
	59873.2	03946	288.42503	-21.40844		•
	59875.2	03948	288.37854	-21.41377	Imag	es 1s
2023	60196.3	04269	288.25001	-21.44998	about	$64\mathbf{T}\mathbf{R}$
2025	60197.3	04270	288.25002	-21.44998	abbu	

Major Config of observation

100 images are taken per night (~200GB raw data)
An exposure time of 90 seconds per image.

 \blacksquare r2 or special wide filter.

Data analysis method

Canada & US teamMethod 1Fraser et al. (2024)LSST pipeline + GPU + machine learning

Principle:

- <u>Assume the typical velocity range of KBOs</u> and find objects moving at that velocity.
- Since KBOs are faint, the images are **<u>superposed</u>** to amplify the signal.

Independent Data analysis by JAXA's system.

Summary of the procedures performed in the JAXA system

Faint objects can be seen by superposeing images.

SubaruUM-2025 | Masato SHIBUKAWA(SOKENDAI) | A CNN-based AI for Object Detection in KBO search Images collected by Subaru telescope

portions of the

assumed speed.

image at an

Yoshida et al. 2024 PASJ, 76, 7	20–732, https://doi.or	g/10.1093/pasj/psae043
---------------------------------	------------------------	------------------------

Subaru Telescope		CfCA		Chiba Institute of Technology PERC	ISAS	
Japanese	English	Japanese	English	Japanese · English	Japanese	English

Buie et al. Accepted for publication in The Planetary Science Journal (https://arxiv.org/abs/2403.04927) Fraser et al. Accepted for publication in The Planetary Science Journal (https://arxiv.org/abs/2407.21142)

NAOJ		Subaru Telescope		CfCA		Chiba Institute of Technology PERC	NASA New Horizons
Japanese	English	Japanese	English	Japanese	English	Japanese•English	English

Machine Learning Methods

Introduction : Research topic and objective

Classification by a 32 superposed image

- The highest accuracy achieved was 92%.
- The main cause was images, which were difficult to classify even for the human eye.

Classification by multi superposed images

For human classification, images with 4, 8, 16, 32
 superposed were used

Image for visual inspection for real KBOs

Realization of a highly accurate detection method by a machine learning using multiple superposed images as input

Methodology : Model Architecture

Methodology : Concept of Models

Backbone-CNN

■ <u>Simple CNN</u>

- 2 or 4 layers
- 6 different types of channel

■ <u>Complex CNN</u>

- Based on ResNet^[1]
- 5 different types of layers :
 - 18, 34, 50, 101, 152 layers

CBAM

It learns which channels and which positions are important with attention, improving performance.

Methodology : How to create Multi Input Data

16

Experiment : Experimental Setup of Simple CNN

			TUDICI					
Name	Item							
Id	No1	No2	No3	No4	No5	No6		
channel set	32-64	64-128	32-32-64-64	64-64-128-128	32-64-128-256	64-128-256-512		
Layer	2	2	4	4	4	4		
Parameters	47.0K	130K	93.2K	315K	500K	1.77M		
(1ch input data)	(K : kilo)	(K : kilo)	(K : kilo)	(K : kilo)	(K : kilo)	(M : million)		
Epoch	30							
Batch size	32							
Learning ratio*	0.01							
Change raito*	0.1							
Change step*	5, 10, 15, 20, 25							
Optimizer	SGD : Stochastic Gradient Descent							
Loss function	BCE : Binary Closs Entropy							
momentum	0.9							
weight decay	0.0001							

Tahlo1

*To reduce loss, the learning rate was decreased by a factor of 10 (change ratio) at specified epochs(change step) as the training progressed.

Experiment : Experimental Setup of Complex CNN

Table2								
Name	Item							
Id	res18	res34	res50	res101	res152			
Base Model	ResNet 18	ResNet 34	ResNet 50	ResNet 101	ResNet 152			
Layer	18	34	50	101	152			
Parameters	3.18M	11.4M	13.2M	24.9M	34.6M			
(1ch input data)	(M : million)	(M : million)	(M : million)	(M : million)	(M : million)			
Epoch	30							
Batch size	32							
Learning ratio*	0.01							
Change raito*	0.1							
Change step*	5, 10, 15, 20, 25							
Optimizer	SGD : Stochastic Gradient Descent							
Loss function	BCE : Binary Closs Entropy							
momentum	0.9							
weight decay	0.0001							

*To reduce the loss, the learning rate was decreased by a factor of 10 (change ratio) at specified epochs(change step) as the training progressed.

Exp 1 : Train & Test by one supervised dataset

Concept

The model was trained and its classification performance evaluated using a dataset from a single day's observations.

Objective

To verify the absolute performance of the model on the training data.

Exp 2 : Test by another supervised dataset

Concept

■ The model's performance was evaluated using a dataset from another day's observations.

Objective

■ To evaluate the performance on untrained observation data from different days.

Result of Exp1, 2

Teacher

Dataset

96.82

97.25

98.52

91.81

Performance

Metrics

Accuracy

Precision

Inv Precision

Recall

0.2

0.4

SubaruUM-2025 | Masato SHIBUKAWA(SOKENDAI) | A CNN-based AI for Object Detection in KBO search Images collected by Subaru telescope

 10^{0}

0.0

Histogram of Test observation dataset

0.6

Output

0.8

1.0

Result of Exp 3 : Human cost reduction rate

Performance

Histogram of Test observation dataset

We are conducting observations using Subaru to support the search for the second flyby object of New Horizons.

JAXA's Moving Object Detection System enables the detection of faint moving objects through its unique superposition method.

To improve the efficiency of object detection in superposed images, we developed a model that takes multiple images as input.

Through threshold adjustments, the model achieved a 97.38% reduction in human tasks.