"Subaru Users Meeting FY2024"

A systematic search for rapid transients in the Subaru HSC-SSP transient survey <u>Toshikage et al. 2024</u>

Seiji TOSHIKAGE (Tohoku University),

in collaboration with Masaomi Tanaka, Naoki Yasuda, Takashi J. Moriya, Ichiro Takahashi, Ji-an Jiang, Mitsuru Kokubo, Naoki Matsumoto, Keiichi Maeda, Tomoki Morokuma, Nao Suzuki, and Nozomu Tominaga

Subaru telescope, Image credit: NAOJ

Discovered supernovae

Made with data from open supernovae catalogue

Current status of the transient survey

For selecting follow-up targets or utilizing light-curve data, photometric classification of transient is needed

3

What is rapid transient? (in 2010s)

What is rapid transient? (in 2020s)

the number of rapid transients is not enough, and limited in the local universe (z <= 0.5)

Current issues

- development of the photometric classification method
- the number of Rapid Transient is not enough, especially in mid to high-z

for discussing event rate, luminosity function, host galaxy ...

Exploration of rapid transient in HSC-SSP transient survey

- development of the ML classifier based on photometric data
- statistical analysis of rapid transient with big data

Subaru HSC-SSP transient survey

7

Subaru HSC-SSP transient survey

Exploration of rapid transients in big data \sim 3000 SNe

Redshift distribution of Subaru SNe candidates

Method: classification with machine learning

 \mathbf{IO}

Random Forest (supervised learning method)

Random Forest (supervised learning method)

Breiman 2001, Pedregosa et al. 2011

rf, accuracy:0.931

	la	model template (SALT II)		la -	0.95 (2383)	0.04 (104)	0.00 (10)	0.01 (13)
	lbc II	observational template Kessler+ 2009, Sako+ 2011	abel	lbc -	0.05 (132)	0.91 (2237)	0.03 (77)	0.00 (10)
	rapid	Arnett 1982 one zone approx. model cover reported objects in phase space	True la	۱ŀ	0.02 (51)	0.04 (94)	0.93 (2372)	0.01 (23)
based on these templates simulate LCs → training data set (Ia, Ibc, II: 10000, rapid:3000				ra-	0.01 (8)	0.02 (12)	0.05 (35)	0.93 (689)
			0)		la	lbc Predicte	lİ əd label	ra

ML model archive high accuracy more then 90%

HSC transient survey 3381 SNe

ML classification supervised model : random forest

rapid transient candidates 315 SNe

selection with data quality

LC peak was observed
No unphysical data point
redshift is identified

final candidates 76 SNe

Visual inspection with literal samples

✓ GPR miss interpolation?

14 objects

Tampo et al. 2020

New!

14 rapid transients were identified (including 4 objects already reported by Tampo et al. 2020)

Overview of rapid transient

15

Subgroup among rapid transients

Prospects

Photometric search by Rubin, Subaru

 \rightarrow Spectroscopic confirmation by Subaru/PFS + ELTs

Exploration of Rapid Transient in HSC-SSP transient survey

1. selection of rapid transient

development of classification method with ML identified 14 rapid transients

2. analysis of the rapid transient

rapid transient $\sim 1\%$ of CCSNe

Ibn-like supernova $\geq 1\%$ of Ibc SNe @ z = 0.7

rapid and luminous SNe \geq 10% of SLSNe @ z= 1.5