

ULTIMATE-Subaru Wide Field Imager (WFI)

Kosuke Kushibiki (Advanced Technology Center, NAOJ) on behalf of ULTIMATE-Subaru WFI development team

Near-Infrared Imager for ULTIMATE-Subaru: Final design phase

- Widest AO corrected science FoV ~ $14' \times 14'$
- Image quality comparable to HST FWHM ~ 0.2" at K-band

• Wide variety of MB/NB filters

Four-barrel optics by OptCraft

• Covers ~ $14' \times 14'$ with four identical barrels $\rightarrow 7.2' \times 7.2' \times 4 = 207 \square'$

- 3 filter wheels containing max. 15 filters
 → Accept many filters (BB, MB, NB)
- Field lenses are in ambient temperature & following optics in cryogenic condition
 - → Reduce the size of the vacuum windows and cryostat

Optical Performance

Exchangeable Filter Wheels

Capacity of filter wheels per barrel = 15 < Total filters proposed in scientific studies

 \rightarrow Easy filter replacement during downtime

Design study is ongoing

- How to exchange the filters
- Impact on cryostat design

Additional Cold Baffles

The telescope is not designed to have $\Phi 20'$ FoV

- \rightarrow Many ambient structures contribute to the thermal background
- \rightarrow Need additional Cold baffles
- \rightarrow Throughput considering only vignetting: 68% ~ 92.4% within Φ 20' FoV

Additional Cold Baffles

The telescope is not designed to have $\Phi 20'$ FoV

- \rightarrow Many ambient structures contribute to the thermal background
- → Need additional Cold baffles
- \rightarrow Throughput considering only vignetting: 68% ~ 92.4% within Φ 20' FoV

Center of Total FoV

Cryostat Design

Sumitomo Heavy Industries design

- Cylindrical shape cryostat dewar
- Truss support structure
- Two GM-cycle cooler

Should fit the requirements of Subaru Cassegrain instrument interface

- Weight requirement < 2 ton
- \rightarrow Current projected weight > 3 ton
- → Instrument exchange with CIAX is not possible
- Height requirement < 1.91 m \rightarrow OK

H4RG Detector

One HAWAII-4RG-15 per barrel

- 4088 × 4088 sensitive pixels
- 15 µm/pix

Procurement of only one H4RG just started

- Will be delivered in mid-2025
- Readout electronics: 2 SIDECAR-ASICs
- Expensive ...

Hall et al. 2016

Funding Status & Schedule

Awarded JSPS Grant-in-Aid for Specially Promoted Research

- PI : Tadayuki Kodama (Tohoku Univ.)
- ~4.5M USD over 7 years (2024-2030)
- Only 1~2 out of 4 barrels will be fabricated
- The rests are expected through additional contributions from NAOJ and international collaborations (but not secured yet)

Schedule

Summary

- ULTIMATE-Subaru WFI is a near-infrared wide field imager that covers a wide and high-resolution image formed by GLAO.
 - FoV ~ $14' \times 14'$
 - FWHM ~ 0.2" at K-band
 - Various MB/NB filters
- The final design of the optics and cryostat is ongoing.
 - Four-barrel optical design
 - Exchangeable filter wheel
 - Additional cold baffles
 - Should meet the requirement of Subaru Cassegrain instruments
- Procurement of only one H4RG just started.
- Funding for only 1-2 optical barrels is awarded.
 We are actively seeking opportunities to secure additional funding by establishing international collaborations.
 - Cash / In-kind contribution
 - Participation in ULTIMATE-SSP