

[P08] Tiling tool for Subaru/PFS open-use programs: PFS Pointing Planner (PPP)

Wanqiu He, Masayuki Tanaka, Miho N. Ishigaki, Masato Onodera (NAOJ) & obsproc member

Introduction

Subaru Prime Focus Spectrograph (PFS) is a fiber-fed multiplex system, which enables acquisition of around 2000 spectra of science objects simultaneously over a wide hexagonal field of 1.38 deg on the sky. In order to efficiently utilize all fibers, we plan to **share fibers** among multiple open-use programs

- Problem: WHERE TO POINT the TELESCOPE? —> different programs can have different science priority, spatial density/distribution, exposure time, etc.
- In this poster, we introduce <u>PFS Pointing Planner (PPP)</u>, the tool to optimize pointing centers for PFS open-use programs. It incorporates with a flexible weighting scheme, which considers the science priority, local density, and exposure time of each target. The tool enables:
- ▶ to ensure the allocated fiberhours of each proposal can be fully achieved, with the high-user-priority targets reaching high completion rates

The general flow-chart

Simulation

construct 8 mock proposals from science working groups

- simulate the submission of each proposal through uploader
 - · assume the classic mode
 - users define the requested fiberhours (FH) and time (ROT) by dragging the slider in uploader (see [P07])
- > simulate the science review, and assign a rank for each proposal

Proposal	type	N_tg	resolutio	FH tot	FH request	FH TAC	FH PPP	rank
S24AQN001	star	5510	L&M	1377.5	646	595.5	595.5	10.0
S24AQN002	galaxy	4093	L	3247.75	2929.5	1730	1729.75	8.8
S24AQN003	star	565	М	234.5	234.5	234.5	234.5	9.1
S24AQN004	star	258	М	64.5	62.25	62.25	62.25	8.2
S24AQN005	galaxy	11433	М	9683.5	8017.25	5166	5151.5	7.5
S24AQN006	AGN	8451	L	16902	11157.25	2542.25	2517.5	7.0
S24AQN007	galaxy	9000	L	9000	7341.25	2594.5	2594.5	6.5
S24AQN008	cluster	306	L	612	608	320	313.25	5.6
40 - Distribution of testing samples								
U ²⁰⁻	· · ·							
Po DE	- 1 2			•				•
-20 -								
	•	0	100	150	200	250	300	350

- simulate the time allocation (TAC)
 - ▶ assume 7 nights ~ 220 pointings
 - ▶ prioritize high-rank proposals
 - for low-rank proposals, the allocated FH might be highly reduced compared to the requested one

RA

simulate the optimization with PPP

- assume fiber-sharing among proposals
- constraints: allocated FH of each proposal

▶ results:

- only 197 pointings are needed
 - -> less time required = more space for bad weather
- ~100% of the allocated FH can be achieved no matter for high- or low-rank proposals
- after the optimization, the fraction of fully-completed targets (i.e., targets achieving the requested exposure time) can be increased

 after the optimization, more high-P targets can be completed in each proposal compared to those expected by the classic mode

Future prospects:

- we are testing PPP with different science cases
 - we plan to generate PFSdesign files for end-to-end simulation