Enhancing scientific discoveries using Photonic Lanterns on the SCExAO system

Sébastien Vievard (Subaru Telescope, Astrobiology Center), M. Lallement, S. Leon-Saval, O. Guyon, N. Jovanovic, E. Huby, S. Lacour, J. Lozi, V. Deo, K. Ahn, YJ Kim, D. Levinstein, J. Lin, M. Fitzgerald, B. Norris, S. Sallum, P. Gatkine, T. Kotani, M. Tamura, E. Spalding, Y. Xin

© NAOJ

2023 Subaru Users Meeting

What is a Photonic Lantern?

Schematics representation of two different approaches for the fabrication of Photonic Lanterns; Top: Multicore fibre approach; and Bottom: Standard single-mode fiber combiner/splitter technique. *From Leon-Saval et al.* "Photonic Lanterns: a study of light propagation in multimode to single-mode

converters" OSA 2010

Photonic Lantern (PL) = Fibered device with Multi-Mode input and several Single-Mode outputs
Adiabatic transition between MM to SM mode very efficient (>90%, Birks et al. 2015)
Allows for SMF-fed spectroscopy with high throughput

Photonic Lantern spectroscopy instrument concept

Properties of Photonic Lanterns

The intensity distribution at the SMF outputs depends on the input scene

PSF at the multi mode input

Intensities at the single mode

Simulation by Yoo-Jung Kim

 \rightarrow PL outputs can be used for constraining the input scene for science applications.

Properties of Photonic Lanterns

The intensity distribution at the SMF outputs depends on the input wavefront

B. Norris et al, Nature, 2020

 \rightarrow PL outputs can be used for wavefront control

Photonic Lanterns capabilities in a nutshell

High throughput Enabling SMF-fed spectroscopy with high efficiency (especially in the Visible)

Photonic Lanterns capabilities in a nutshell

High throughput Enabling SMF-fed spectroscopy with high efficiency (especially in the Visible)

Sensitive to input scene

Output flux distribution depends on the observed object

Photonic Lanterns capabilities in a nutshell

High throughput Enabling SMF-fed spectroscopy with high efficiency (especially in the Visible)

Sensitive to input scene

Output flux distribution depends on the observed object

Sensitive to input wavefront Output flux distribution depends on the input wavefront

Science applications – SMF-fed spectroscopy

- **Spectrally dispersed wavefront sensing and close-loop control (Island Effect)** J. Lin
- Image reconstruction, spectro-imagingY-J Kim, B. Norris, O. Guyon
- **Efficient injection into photonic devices (FIRST)** *E. Huby, S. Lacour + FIRST team, Y-J Kim*
- **Emission line source detection (H-alpha accreting planets)** *M. Lallement, S. Vievard, O. Guyon*
- **Emission line source characterization (H-alpha accreting planets injection into RHEA R~60,000)** S. Vievard, O. Guyon
- **Spectro-astrometry** D. Levinstein
- **Extreme Precision Radial Velocity (EPRV)** *T. Kotani, M. Tamura, O. Guyon*

SCExAO = Subaru Coronagraphic Extreme Adaptive Optics

 \rightarrow High contrast imaging instrumentation

SCExAO = Subaru Coronagraphic Extreme Adaptive Optics

- \rightarrow High contrast imaging instrumentation
- → High Strehl PSF injected into the multi-mode photonic lantern input + single-mode fiber-fed spectroscopy

Visible Photonic Lantern – Data acquisition

38 spectra on the detector (19 x 2 polarizations)

- → Flux repartition between the PL outputs depends on the source position/shape and the injected wavefront
- \rightarrow Spectral structures appear depending on the injected PSF size (~injected beam focal ratio or F#)

PL imaging the SCExAO internal super continuum source (F#4)

 \rightarrow How to properly inject light into the Photonic Lantern?

To efficiently couple light into the PL, the PL core (~25um) must be centered on the injected PSF. This optimal position of the PL is found using **coupling maps**.

To efficiently couple light into the PL, the PL core (~25um) must be centered on the injected PSF. This optimal position of the PL is found using **coupling maps**.

Coupling maps for various focal ratios (or PSF size)

 \rightarrow Less structures when focal ratio increases

Coupling maps for various focal ratios (or PSF size)

 \rightarrow Less structures when focal ratio increases

•

❖ Spectrum reconstruction at various focal ratios
 → Spectral information loss for low focal ratios

Visible Photonic Lantern – Injection efficiency

19

Visible Photonic Lantern – Injection efficiency

Visible Photonic Lantern – Injection efficiency

- Observation of Humu [*Altair*]
- Raw data 5 ms exposure
- Medium seeing conditions (0.6 arcsec reported)

• Fast residual wavefront error (~100Hz) redistributes light among the 38 spectra \rightarrow Fast chromatic modulations

Humu [*Altair*] test on-sky:

- Large FoV f-ratio ~ 4
- Medium seeing conditions
- 5ms exposure
- 12000 frames averaged
- 1D spectrum extraction :

dd spectra (B)

Extract each row (A) and

 \rightarrow Coupling efficiency estimation : 6% average - ~11% at best (in lab, 18% obtained)

Conclusion & Perspectives

- ◆ Photonic Lanterns can enable self calibrated high efficiency spectroscopy with SMFs (deployable mini IFUs, radial velocity...) → various applications depending on the selected focal ratio
- More tests to come on-sky for instrument commissioning
- ***** Key perspectives for the future :
 - Coupling with high resolution spectrograph (R-60,000) for H-alpha line characterization
 - Enabling Extreme Precision Radial Velocity measurments
 - Combination with photonic chips

Waverfont sensing (petalling, cophasing, NCPAs, Self calibration)

Properties of Photonic Lanterns

The intensity distribution at the SMF outputs depends on the input scene

Numerically simulated intensity responses for a standard 6-port PL

 \rightarrow PL outputs can be used for constraining the input scene for science applications.

Simulations by Yoo-Jung Kim

Coupling maps for 19 outputs + Total @ 765nm

 \rightarrow High order structures on each output maps - smoother on the total (ratio darkest/brightest ~ 0.4)

Coupling maps at various wavelengths

 \rightarrow Pattern changes with the wavelength

Pōʻā [Algol] :

- 20ms exposure
- 3000 frames averaged
- 1D spectrum extraction : Extract each row and coadd spectra

35000 Photonic lantern Single Mode fiber 30000 25000 20000 ₽DO x15 15000 10000 5000 0 650 700 750 800 600 Wavelength (nm)

29

- Comparison with SMF spectroscopy (same exposure time, spectrum extracted from 3000 averaged frames)
- At best, gain x15
- Overall, x12.5 more flux

Correction of static aberrations: petalling / low wind effect – Work by Jon Lin

Correction of the four petal-piston modes out to ~2 radians RMS

Interferometric imaging with Photonic Lanterns

A pairwise beam combination of PL outputs (e.g., ABCD beam combiner) to measure coherence properties in the incoming wavefront filtered by different apertures (PLPMs). (Single telescope interferometry)

$$\mathcal{V}_{ij} = \frac{(I_{ij,A} - I_{ij,B}) + (I_{ij,C} - I_{ij,D})}{I_{ij,A} + I_{ij,B} + I_{ij,C} + I_{ij,D}}$$

Backend photonic chip beam combiner

