A massive quiescent galaxy in a group environment at z = 4.53

Kakimoto et al. 2024, ApJ in press (arXiv:2308.15011)

Takumi Kakimoto (SOKENDAI/NAOJ), Masayuki Tanaka (NAOJ), Masato Onodera (NAOJ), Rhythm Shimakawa (Waseda University) et al.

Abstract

- 1. A massive quiescent galaxy at z = 4.53
 - 1. Confirmed at the second highest redshift
 - 2. Inferred star formation history shows this galaxy experienced starburst at $z_{\rm phot} \sim 5$ following a rapid quenching phase.
- 2. A massive galaxy group candidate at z = 4.5 (5 massive galaxies)
 - 1. First discovery of the galaxy group with a quiescent galaxy
 - 2. This over-density significance is the largest in the COSMOS field at $4.4 < z_{phot} < 4.7$.
 - 3. The Inferred halo mass from the central quiescent galaxy is ~ $10^{12.3} M_{\odot}$, and 3 SFGs are located $\leq R_{\rm vir}$ (70 kpc).

1.1 Star formation history of Local Ellipticals

Star formation histories of massive elliptical galaxies in the local Universe. (Thomas et al. 2010)

Open Question

What are the physical drivers of starburst and subsequent quenching?

- Many studies have been carried out to search for the progenitors of the local ellipticals.
- Method: Directly observe the quenching phase of the galaxy.

3/14

1.2 Possible quenching mechanism

• Man & Belli 2018

What causes quenching in massive galaxies?

- Mass quenching
 - AGN feedback
 - Stellar feedback
- Environmental quenching
 - Strangulation (starvation)
 - Mergers
 - Galaxy harassment
 - Ram-pressure stripping

• Which is a main driver of massive galaxy quenching at high redshift?

2.1 Target Selection

COSMOS field

©OSMOS

- The main data sets cover a wide area ($\approx 2 \text{ deg}^2$).
- This field has been observed from X-rays to radio wavelengths.
 - → High-precision photometric redshifts can be obtained.

VISTA K_s-band image

A massive galaxy candidate with a strong Balmer break at $z_{phot} \sim 4.7$. (Weaver et al. 2022)

2024/1/25

A massive quiescent galaxy at z=4.53

2.2 Target Spectrum

2.3 Performing SED fitting (Prospector)

Rest-frame UV to NIR SED & model spectrum from prospector.

Fitting code: Prospector [Johnson et al. 2021] Assumption:

- Chabrier (2003) IMF
- Solar metallicity
- Delayed tau-model ($SFR(t) \propto te^{-t/\tau}$) Non-parametric SFH

•
$$z_{\rm spec} = 4.53$$

Model Spectrum Features

- Strong Balmer break
 - → Being quenched phase

7/14

2.4 Estimated star formation history

Inferred star formation history of the quiescent galaxy.

Physical properties

- ◆ Large stellar mass ~ 10^{10.8} M_☉
 ♦ Young stellar age ~ 200 Myr
- This galaxy experienced starburst at z ~ 5 and then rapidly quenched.

- One of the progenitors of massive ellipticals in the local Universe.
- Spectroscopically confirmed at the second highest redshift

2.5 Surrounding environment

arcmin QG C SFG

RGB image (Red: VISTA/Ks-band, Green: VISTA/H-band, Blue: HSC/i-band)

Located in the galaxy group?

- 4 massive star-forming galaxies within 23"(150 kpc) from the quiescent galaxy.
 The companion galaxy is located at ~ 13 kpc from the QG.
- Over-density significance (4.4 $< z_{phot} < 4.7$)
 - 12 σ in the kernel density estimation method.
 - $r = 30''(200 \text{ kpc}) \rightarrow \text{The densest region!}$
 - 2.2 σ at r = 2.5'(1 Mpc)
 - \rightarrow Significantly compact!

2.6 Physical properties of the members

Rest-frame UV to NIR SED of the member galaxy

Relation between stellar mass and star formation rate.

All members are normal star-forming galaxies except the central quiescent galaxy.

A massive quiescent galaxy at z=4.53

2024/1/25

10/14

2.7 Group characteristics

1 arcmin \bigcirc QG \bigcirc SFG

RGB image (Red: VISTA/Ks-band, Green: VISTA/H-band, Blue: HSC/i-band)

Located in the galaxy group?

- QG's halo-mass is ~ 10^{12.3} M_☉ from stellar-to-halo mass relation (Shuntov+ 22).
- 3 SFGs are possibly located within or on the virial radius (~ 70 kpc) of the QG.

- These galaxies are likely to form a group.
- This is the first time to focus on the environment for quenching at z > 4.
- Environmental effects (interactions or mergers) may cause the galaxy to quench or starburst.

2.8 Formation scenario

Simulation: Cores would be the first regions to show evidence of galaxy quenching.

Minor mergers and galaxy interactions increase star formation efficiency and AGN activity.

The core-scale quenching has already occurred at z > 4 by gas consumption due to the starburst and/or AGN feedback.

2.9 Future prospects

• Spectroscopic follow-up of the galaxy group (S24A)

Model SED of one of the star-forming members in a group.

- FOCAS multi-object spectrograph on the Subaru telescope
 We plan to observe the Lyman alpha emission and/or break.
- Confirm the redshift and physical properties of the target.

→ First step to confirm the extreme overdense environment for quenching

3. Summary

• We confirm a massive quiescent galaxy at z = 4.53 using Keck/MOSFIRE spectrograph.

Unique properties

Spectroscopically confirmed at the second highest redshift

This galaxy is in the small over-density region (galaxy group?).

→ Environmental effects (mergers and/or interactions) may play a role to the galaxy quench.

Takumi Kakimoto (M2)@SOKENDAI takumi.kakimoto@grad.nao.ac.jp