Mass Function of Young Clusters in Galactic Low-metallicity Environments

Chikako Yasui (National Astronomical Observatory of Japan)

Collaborators: (ASIAA) Natsuko Izumi Masao Saito (NAOJ) Naoto Kobayashi (Univ. of Tokyo) Yuji Ikeda (Photocodng) (NOIRLab) Ryan Lau Michael E. Ressler (JPL/Caltech)

1. Introduction Metallicity and galactic evolution \star The metallicity increases as galaxies evolve

 \checkmark IMF affects metallicity of next generation, and in tern metallicity can change IMF Dependence of IMF on metallicity is necessary to understand galaxy evolution \checkmark Metallicity of interest here: ~ -1 dex Corresponds to $z \approx 2$, or late stage of halo formation and early stage of disk formation in the Galaxy

1. Introduction IMF in low-metallicity environments

★ Globular clusters

Globular clusters are very old (~1010 yr)

Mass segregation Present-day mass function may not reflect the IMF

✓ Small mass range (≲1M☉)

In contrast, massive stars ($\leq 20 \text{ M}$) have not yet ended their lived in young clusters (10⁶ yr)

Young clusters in LMC/SMC

Large distances (~50 kpc)

Different scales (Andersen 2009)
Of typical cluster scale in the solar neigh

Cf. typical cluster scale in the solar neighborhood: r~1 pc (Adams+ The existence of multiple generations are pointed out (e.g., ~0.1-

✓ Lack of spatial resolution

~ 10^2-10^5 stars arcsec⁻² (Leschinski & Alves 2020)

Although it is not clear whether this is the direct reason, in some r derived the standard IMF (Kerber & Santiago 2006), while in other R136; Sirianni et al. 2000).

Globular clusters

Paresce & De Marchi 2000

1. Introduction IMF in low-metallicity environments

★ Globular clusters

Globular clusters are very old (~10¹⁰ yr)

Mass segregation Present-day mass function may not reflect the IMF

✓ Small mass range (≲1M⊙)

In contrast, massive stars ($\leq 20 \text{ M}$) have not yet ended their lived in young clusters (10⁶ yr)

Young clusters in LMC/SMC

Large distances (~50 kpc)

✓ Different scales (Andersen 2009)

Cf. typical cluster scale in the solar neighborhood: r~1 pc (Adams+2006)
 The existence of multiple generations are pointed out (e.g., ~0.1–50 Myr; De Marchi et al. 2017)
 ✓ Lack of spatial resolution

~ $10^2 - 10^5$ stars arcsec⁻² (Leschinski & Alves 2020)

Although it is not clear whether this is the direct reason, in some regions investigators have derived the standard IMF (Kerber & Santiago 2006), while in others the IMF is flatter (e.g., R136; Sirianni et al. 2000).

The outer Galaxy

 \bigstar Galactic radius of \ge 15 kpc: ~1/10 metallicity in the solar neighborhood

Credit: Nasa/JPL

Smartt & Rolenston (1997)

✓ Relatively small distances D~5-10 kpc (Cf. ~50 kpc for LMC/SMC) - Resolved detection of individual sources is possible (e.g., Yasui+ 2006) - High sensitivity observations allow low mass detection limit to be achieved

metallicity

★ Targets in the outer Galaxy for Subaru observations ✓Large Galactrocentric distance: (Rg) ≥ 15 kpc ✓Very low metallicity: [O/H]~-0.5--1 dex

Targets	R_g / Distance	[O/H]	
	(KPC)	(dex)	
Sh 2-127	13.5/10	-0.6	Yasui+2021a
Digel Cloud 1	22/16		Izumi+2014, 2022
Digel Cloud2	19/12	-0.7	Yasui+2006, 2008, 200
Sh 2-207	12/4	-0.8	Yasui+2016a
Sh 2-208	12/4	-0.8	Yasui+2016b
Sh 2-209	$18/10 \rightarrow 10/2.5$	-0.5	Yasui+2023
Sh 2-283	15/8	-0.6	
Sh 2-98	15/8	-0.5	

~10 star-forming regions are selected

 \checkmark Mass detection limit of ~0.1 M_{\odot} (Cf. ~1 M_{\odot} for LMC/SMC w/H \checkmark Fitting of K-band luminosity function (KLF)

- Assuming the Gaussian IMF (Miller & Scalo 1979)
- Assuming single cluster ages (w/o age spread) and single reddening values

Consistent with IMF in the solar neighborhood (high-mass slope (Γ) & IMF peak (Mc)) However, the derived IMF have a large scatter \rightarrow Targets with more members are essential

eddening values .1M⊙

(Yasui+2008, 2016) nass slope (Γ) & IMF peak (Mc))

2. Results from Subaru observations Subaru observation

★ Sh 2-209 (S209) ✓ Metallicity $12 + \log(O/H) \approx 8.3 (\approx -0.5 \text{ dex})$ Very low metallicity comparable to SMC ✓ Distance Photometric/kinematic distance: $D \simeq 10 \text{ kpc}$ (Rg $\simeq 18 \text{ kpc}$) (Chini&Wink 1984, Foster & Brunt 2015) Gaia astrometric distance: $D \simeq 2.5 \text{ kpc}$ ($Rg \simeq 10.5 \text{ kpc}$) \star NIR imaging ✓ Instrument Subaru MOIRCS ✓ Filters J (1.25 μm), H (1.65 μm), Ks (2.12 μm) Integration time: ~500–1000 sec Limiting magnitudes Ks=20.5 mag (10 σ)

(Ichikawa+2006, Suzuki+2008)

Introduced in AAS Nova

Obtained NIR images

The largest star-forming regions in the outer Galaxy Two clusters with a large number of cluster members are identified

Web release on July 5, 2023 Used as a picture of Subaru calendar 2024

Obtained NIR images

Introduced in AAS Nova

The largest star-forming regions in the outer Galaxy Two clusters with a large number of cluster members are identified

Web release on July 5, 2023 Used as a picture of Subaru calendar 2024

(Yasui+2023)

The obtained IMF suggests

- Slightly top-heavy high-mass slope (Γ =-1.0±0.1 Cf. Salpeter Γ =-1.35) - Low break mass (\simeq 0.1 M \odot) \rightarrow Low characteristic mass (Mc <0.1 M \odot)?

Summary

XIMF in a low-metallicity environment in the Galaxy

NIR imaging of the largest star-forming region with high spatial resolution
 - Resolved detection of individual source

- Mass detection limit of $\simeq 0.1 M_{\odot}$

Derived IMF using IMF + age as parameters from KLF fit

- Confirmed that the estimates of cluster ages are reasonable
- The obtained IMF suggests
 - The high-mass slope (Γ_1) is slightly top-heavy
 - The break mass (m_1) is slightly smaller (~0.1 M_{\odot})?
- Found that the method used here can obtain IMFs with high accuracy for large clusters, but is difficult for small clusters due to large uncertainties

 \rightarrow Derive IMF statistically for the already acquired data of ~10 star forming regions for the next step

The IMF for young star-forming regions has been derived on a cluster scale with high spatial resolution in a low-metallicity environment for the first time.

Future prospects

Heavily dependent on how effective the AO systems on the ELTs will work.

Quite high spatial resolution ($\Delta \theta \sim 0$ ".01 w/AO) will enable us to extend spatially resolved studies to <u>the Local Group</u> for the first time \rightarrow Mass detection limit of < 1 M_{\odot} (K \sim 27 mag) For 1 Myr-old targets at D=770kpc, ~0.1 M_{\odot} (Av=0mag) / ~0.5 M_{\odot} (Av=10mag)

(Yasui+2020)